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Abstract

Network is a critical part of software since conditions such as delay, duplicate packets, loss
etc. require special treatment by algorithms and applications. Emulating such conditions is
crucial since certain errors may arise only under special conditions. Especially routing algo-
rithms, distributed applications and protocols in general, require network topologies with
many nodes and mobility involved. Physical testbeds, network simulation and network
emulation are approaches to create these special environments.
This thesis presents MiniWorld, a distributed network emulation framework. Flexibility,
modularity, exchangeability and transparency are incorporated into the design of Mini-
World. The framework points out its feasibility by including 4 network backends for both
wired and wireless communication emulation. Moreover, MiniWorld uses WiFi virtualiza-
tion to offer KVM based VMs a real WiFi interface. Connection tracking, differential network
switching and network checking is provided to each network backend automatically.
A study of 802.11s shows the feasibility of the WiFi virtualization approach. To remove
performance bottlenecks, MiniWorld supports distributed emulation with different VM
scheduling algorithms. The Serval mesh software is used to show the distributed mode of
MiniWorld. 256 KVM VMs are interconnected in a chain topology and distributed across 7
computers.
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Deutsche Zusammenfassung

Das Netzwerk einer Applikation ist ein kritischer Bestandteil, da bestimmte Umgebungsvari-
ablen wie Verzögerungen und doppelte, fehlerhafte oder verlorene Pakete eine besondere
Behandlung durch Algorithmen und Anwendungen benötigen. Die Emulation solcher
Netzwerkbedingungen ist allerdings notwendig, um gerade die Fehler einer Applikation
ausfindig zu machen, die nur unter bestimmten Voraussetzungen auftreten. Besonders
betroffen davon sind Routing-Algorithmen und verteilte Applikationen, da in diesen Fällen
Netzwerk-Topologien mit vielen Knoten und einem hohen Grad an Mobilität benötigt
werden. Physikalische Testaufbauten, Netzwerkemulation und Netzwerksimulation sind
Ansätze, die versuchen auf diese speziellen Anforderungen einzugehen.
Im Rahmen dieser Thesis wird das verteilte framework für Netzwerkemulation mit dem
Namen MiniWorld vorgestellt. Flexibilität, Modularität und Austauschbarkeit sind in das
Design von MiniWorld eingeflossen, sodass 4 Netzwerk-Backends sowohl kabelgebundene
als auch funkbasierte Kommunikation simulieren können. WiFi Virtualisierung wird be-
nutzt, um WiFi Karten in KVM basierten VMs bereitzustellen. Verbindungen zwischen
Knoten werden durch MiniWorld verwaltet, sodass diese automatisch konfiguriert und
überprüft werden.
Eine Analyse von 802.11s zeigt die Notwendigkeit des Ansatzes der WiFi Virtualisierung.
MiniWorld unterstützt die verteilte Emulation mit unterschiedlichen VM Scheduling-
Algorithmen, um Performance Engpässe zu beseitigen. Die DTN Software Serval wird
verwendet, um den verteilten Modus von MiniWorld zu demonstrieren. Dabei werden 256
KVM VMs in einer Chain Topologie verbunden und über 7 Computer verteilt.
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1 Introduction

Simulation1 is the ”Imitation of a situation or process” and ”The production of a computer
model of something, especially for the purpose of study”. Emulation2 in contrast, is defined
as the ”Reproduction of the function or action of a different computer, software system,
etc.”.
Emulation is used in computer science to mimic the behaviour of hardware/software which
is not supported any more by modern technologies. The approach is known from terminal
emulation or video game platforms emulators such as for the Super Nintendo or the old
fashioned Game Boy.
Network emulation is defined by Lochin et al. as the emulation of the network layer and
above while the lower layers are simulated [28]. Network simulation in contrast leverages a
model to embrace the core of the studied problem. While network simulation is good in
the early design process of new protocols, it can not replace network emulation since real
implementations need to be tested. The FreeBSD TCP stack has been verified by network
simulation but nevertheless a bug has been found which showed up under certain network
conditions[9]. Hence, testing the actual implementation is crucial.
Network simulation and emulation are cost-efficient since either a cheap model replaces
the need of hardware, or the hardware is emulated. Both approaches allow testing of
network protocols, routing algorithms and application software under certain network
conditions. Simulating or emulating wireless communication requires additionally mobility
to be incorporated.
In this thesis, a network distributed network emulation framework called MiniWorld is
presented. The main contributions can be summarized as following:

• KVM based virtualization enables nearly every software and hardware to be emulated.
• 4 network backends prove the flexibility, modularity and exchangeability of Mini-

World’s design.
• Both wired and wireless communication is supported.
• Mobility patterns, link impairment and especially WiFi virtualization, ease the evalua-

tion and development of Wireless Mesh Networks.
• The emulation can be distributed across several computers with an emulation aware

scheduling algorithm.
• Connection tracking, address configuration and network supervision features are

provided automatically to every network backend.

The remainder of this thesis is organized as follows: First the basics of network simulation,
emulation physical testbeds, wireless technologies and networking under Linux are outlined
in Section 2. Related work in the field of network simulation and emulation is introduced in
Section 3. The workflow and design of MiniWorld is presented in Section 4. Implementation
details are discussed in Section 5. Finally, MiniWorld is experimentally evaluated in Section
6 and a conclusion as well as future work is outlined in Section 7.

1https://en.oxforddictionaries.com/definition/simulation. Last viewed on 07.12.2016
2https://en.oxforddictionaries.com/definition/emulation. Last viewed on 07.12.2016
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2 Basics

This section introduces basics which are necessary to understand this thesis. First layered
network architectures are introduced briefly in Section 2.1. They establish the basis for the
understanding of network communication which is required to describe network emulation.
Network simulation, emulation and testbeds are discussed in Section 2.2 where MiniWorld
is classified according to a model for network emulators.
Since MiniWorld aims to be a wireless emulator, the principles of wireless communications
are introduced in Section 2.3. The Section discusses radio propagation effects and introduces
standards such as 802.11 and 802.11s.
Since MiniWorld leverages functionality of the Linux kernel for some of its network back-
ends, the fundamentals of Linux bridges, the flow of packets through the netfilter framework,
Traffic Control (TC) and the integration of wireless drivers into the Kernel are depicted in
Section 2.4.
Node virtualization technologies such as container and hypervisor-based virtualization are
introduced in Section 2.5 to the reader.

2.1 Layered Network Architectures

The use of layers in computer networks is common. They are used to reduce overall
complexity. Each layer offers a certain service. In the following a short summary of the
OSI protocol stack is given because the layer nomenclature is required to describe network
communication.
Hosts communicate with a protocol. It is an agreement on communication rules. Actually,
while hosts communicate, a whole protocol stack is used. Higher layers pass their Protocol
Data Unit1 down towards lower layers. While the PDUs traverses the protocol stack, each
layer adds a new encapsulation to the PDU. Finally it is sent via the Physical Medium. On
the receiving host, the layers of the corresponding protocols are removed one after another.
The standard model is the Open Systems Interconnection (OSI) reference model and contains
seven layers [41]. The lowest layer (layer 1) is the physical layer. It converts binary data
according to the used communication channel. For example for wireless networks, bytes
are modulated and sent via electromagnetic waves.
The next higher layer (layer 2) is the link layer. It is mostly responsible for managing
the channel coordination. For that purpose it includes a sublayer called Medium Access
Control (MAC). Layer 3, the network layer is responsible for routing packets. Routing solves
the problem of how packets can be transmitted to a specific destination.
The transport layer (layer 4) is responsible for the actual data transport. The layer handles
network congestion, flow control and reliability.
Layers 5 and 6 in the OSI model are called session and presentation respectively. The first
deals with session management while the latter is concerned with the presentation of data.

1The Protocol Data Unit (PDU) of layer 1,2,3 and 4 are called bits/symbols, frames, packets and on layer 4
segments for TCP and datagrams for UDP
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2 Basics

On the last layer (7), the communication processes agree on a protocol such as HyperText
Transfer Protocol (HTTP).[41].

2.2 Simulation vs. Testbeds vs. Emulation

According to Lochin et al. there are three possibilities to carry out network experiments:
Simulation, emulation and testbeds lochin2012should. The approaches are explained in the
following in more depth.

2.2.1 Network Simulators

Network simulators rely on a virtual clock. For that reason they are also called discrete-event
simulators. They are not tied to the clock of the system, hence dependent on the complexity
of the problem that shall be simulated, time can be simulated in discrete steps either faster
or slower than system time. For example a work-day model2 could be simulated in a few
seconds or in a few days.
A simulator is cheap and scalable. It simplifies the studied problem by trying to embrace
the core of the problem. Applications have to be rewritten to match the API and to leverage
the network models of the simulator. This approach allows for development of prototypes,
but cannot replace testing the actual code due to the fact that the overhead in real system
hardware needs to be evaluated as well as bugs have to be found [28]. Remember the
example given in the introduction where the FreeBSD TCP Stack has been evaluated inside
a simulator but a bug only appeared in the emulation, not the simulation approach.
Examples of network simulators are summarized in Chapter 3.1.

2.2.2 Testbeds

The simplest approach to perform a network experiment is to reuse existing infrastructure.
This allows testing real code and realistic network models. For example a mesh network
infrastructure could be built to evaluate some mesh software. This results in a realistic
model of layers 1 and 2 but has many disadvantages such as the cost and the inflexibility.
Creating a certain network topology requires much effort and scenario changes based on
certain events like time is not possible. Furthermore, the integration of movement models
into this approach is very hard.
The paper ”When should I use network emulation?” [28] points out a situation where a
new technology is still in development while applications shall be tested on that particular
platform. This is impossible with testbeds but a simulator or emulator can be used instead.

2.2.3 Network Emulators

Emulation combines the best of simulation and testbeds: The actual application code can be
tested in network emulators while the physical infrastructure is used by simulating only
parts of the network.
In contrast to simulators, network emulators do not have a virtual clock. While simulators
use a simulation engine to provide a model which allows testing only inside a closed world,
network emulators rely on the functionality of the Operating System (OS) . Therefore, real

2Tries to match the behaviour of people’s work day by means of movements.
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2.2 Simulation vs. Testbeds vs. Emulation

protocol code can be evaluated without any modifications of the binaries.
Typically the nodes in the emulated network are provided by means of virtualization. This
enables multiple nodes to co-exist on a single computer. A network model is achieved
through artificial impairments such as bandwidth reduction, delay, jitter and/or packet loss
[28].
Network emulation is younger than network simulation. Computer resources were limited
and posed higher limits on virtualization.
Lochin et al. define network emulation as the reuse of layers 3 and above while simulating
layers 1 and 2 [28]. Network simulators in contrast simulate all layers. Lochin et al. propose
a general model for network emulators which is introduced in the following to the reader
(Section 2.2.3). Finally MiniWorld is classified according to the model (Section 2.2.3).

Network Emulation Architecture Model

The architectural model proposed by Lochin et al. [28] is depicted in Figure 2.1. The
upper part of the Figure shows the System under Test which is not part of their model.250 Ann. Telecommun. (2012) 67:247–255

QoS that can be produced by the underlying experi-
ment framework can focus on:

– Artif icial QoS: the experiment framework provides
a way to evaluate the protocol over specific QoS
conditions, not imperatively related to any technol-
ogy or realistic conditions. Artificial QoS allows the
user to test and focus on its experimental protocol
in target QoS conditions. This can be considered
as a form of unit testing. Furthermore, the aim
of this method is to point out errors or bugs that
are difficult to observe in a non-controlled envi-
ronment where they rarely happen. This can be
used, for instance, at the transport level to study the
impact of various packet drops in a TCP connection
(e.g., SYN/ACK packets [22], etc.).

– Realistic QoS: the experiment framework provides
a way to reproduce the behavior of some specific
network architecture as accurately as possible. This
type of experiment allows the user to evaluate the
protocol over an existing network or inter-network
without using a real testbed and all related tech-
nologies (e.g., a wireless network, a satellite net-
work, an Ethernet gigabit network, or any intercon-
nection of such technologies).

Generally, the following set of impairments are com-
monly at least supported by almost all emulators sys-
tems: round-trip time delay, jitter, packet loss rate, and
bandwidth size.

Today, there are several emulation platforms freely
available on the Internet, either remotely accessible
(e.g., EmuLab [36] and Orbit [29, 33]) or for download
and local installation (e.g., IMUNES [40], Netem [25],
Dummynet [34], and KauNet [23]). We strongly believe
it would not be appropriate to simply list and detail all
these proposals. Instead, we propose in the following
section an architectural model where essential features
are highlighted.

4 Network emulation architectural model

Network emulation systems are based on various con-
ceptual levels as illustrated in Fig. 1. In this figure,
we split an emulation system into three complemen-
tary levels, denoted model level, impairment level, and
hardware level. Each of these levels will be discussed in
more details. Note that the user system is not consid-
ered to be a part of the emulation system. It includes
the system under test, for instance a protocol or a dis-
tributed application to be evaluated or demonstrated as
well as traffic sources and sinks.
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Fig. 1 Architectural model for emulation systems

4.1 Hardware level

The lowest layer of the proposed architecture, namely
hardware layer, represents the physical devices really
used by the emulation system. These devices comprise
the real end-systems, the real network links that inter-
connect them and possibly, network components such
as switches or routers. The virtual resources of the
rest of the emulation system and the user system are
mapped on those real resources, e.g., several virtual
end-systems can reside on a single real computer. It is
crucial to understand that hardware level is not neces-
sarily composed by the technologies associated to the
emulated network conditions. For instance, emulating
a satellite link to evaluate the performance of the
TFRC protocol can be roughly done over a few desktop
stations interconnected with ethernet links by setting
appropriate PLR and delay on the resulting emulated
link (see Section 5.1.1).

The emulation system itself can be based on either
a centralized system or a distributed system. In a cen-
tralized emulation system, we only use one computer
to host the sender(s), the receiver(s), the intermedi-
ate node(s), and to manage all the impairments which
define the experiment; while a distributed emulation
system uses several computers to realize the same task.
As an example, the IMUNES [40] system falls in the
first category while Dummynet [34] or EmuLab [36]
belong to the second one.
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Figure 2.1: Model for Network Emulators [28]

There are three important components
in their architectural model: The Hard-
ware Model, the Impairments Model and
the Network Model. These components
are described bottom-up in the follow-
ing.
Hardware Model: The Hardware Model
describes the actual hardware. Virtual
resources such as virtual nodes and
links are mapped to the physical hard-
ware. They distinguish between a cen-
tralized and distributed approach and
argue that distribution offers the better
mapping of virtual resources but also in-
troduces more complexity. Beneath the
fact that distributed systems are always
harder to debug, there is also the prob-
lem of clock synchronization.
Impairments Model: There are 2 im-
pairment models which can be applied
in either the kernel- or user-space of the
OS.
The first is called Artificial QoS and more
a way of unit testing. An example given
is an induced packet loss for testing TCP
acknowledgements. The second is Real-
istic QoS which aims at imitating the characteristics of a special network (wired, wireless,
satellite network etc.) as accurately as possible.
Moreover, they argue that kernel-space impairment has the advantage of being more accu-
rate due to the timer resolution of the Linux kernel.
Network Model: The Network Model is further divided into Virtualization and Impairments
scenario. The virtualization technology is used to simulate virtual hosts and links. There are
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three kinds of impairment approaches: static, event-driven and trace-based. The first consists
of parameters such as bandwidth and delay which remain constant during the experiment.
The second changes the impairment based on events, e.g. every second. The trace-based
impairment captures the characteristics of a certain network and applies the observed
behaviour on the packets during the emulation. Moreover, event-driven and trace-based
impairment can also be used together [28].

MiniWorld Classification

Lochin et al. argue that one should use simulation for modeling and prototyping and
emulation for the evaluation of the real application/protocol implementation [28].
The paper points out an architectural model of network emulators by which MiniWorld
can be classified as follows: It can be used as a centralized system with only a single com-
puter as well as a distributed system. There are 4 network backends included: The Virtual
Distributed Ethernet (VDE) network backend provides a virtual switch which performs
impairment in the user-level. The Bridged network backends however leverage kernel-level
impairment. The WiFi network backend does not have an impairment at the time of writing.
Both the VDE and Bridged network backends use an event-driven approach. The virtualiza-
tion technology used by MiniWorld is Kernel-based Virtual Machine (KVM).

2.3 Wireless Technologies

The following Section provides insights into wireless technologies since MiniWorld aims at
being a wireless emulator. First, the concept of electromagnetic waves are introduced to the
reader. Afterwards radio propagation effects are illustrated. The following Section is based
on the book ”Computer Networks” [41] from Tanenbaum et al.

The basics of wireless communication are waves that propagate through space. When
electron moves, they create electromagnetic waves. This effects was predicted by Maxwell
in 1865 and first observed by Hertz in 1887. A wave has a frequency which describes the
oscillations per second. The unit for the frequency is Hz. Furthermore, waves have different
wave lengths which is the difference between 2 consecutive maxima. The relation between
frequency and wave length is defined by f requency ∗wave length = speed o f light. WiFi on
2.4GHz therefore has a wave length of approximately 0.125 meters whereas 5GHz wireless
networks have a wave length of approximately only 0.06 meters.
The bandwidth of a a frequency spectrum is the difference between the highest and the
lowest frequency.
Shannon describes the capacity of a noisy channel as follows: capacity = B ∗ log2(1+ S/N),
where S/N is the so called Signal-to-Noise Ratio (SNR) and B the bandwidth. Therefore,
the amount of information a signal can carry is better if there is more bandwidth and signal
strength and as little as possible noise. Figure 2.2 outlines the spectrum of electromagnetic
waves. Frequency is depicted in a logarithmic unit on the top part of the Figure. Frequencies
such as (from left to right) Radio, Microwave, Infrared and Visible light can all be used for
transmitting information. UV, X-ray and Gamma ray are dangerous to human livings and
do not propagate through buildings very well but have an even higher bandwidth.
The bottom part of the Figure shows the technologies used inside the specific ITU frequency
spectrum. Fiber optics are very fast because they provide a high bandwidth (lower right part
of the Figure). WiFi belongs to the UHF and SHF band which have frequencies between
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Figure 2-10. The electromagnetic spectrum and its uses for communication.

Eq. (2-4) to find the start and end frequencies from the start and end wavelengths,
we find the frequency range to be about 30,000 GHz. With a reasonable signal-
to-noise ratio of 10 dB, this is 300 Tbps.

Most transmissions use a relatively narrow frequency band (i.e., ∆ f / f << 1).
They concentrate their signals in this narrow band to use the spectrum efficiently
and obtain reasonable data rates by transmitting with enough power. However, in
some cases, a wider band is used, with three variations. In frequency hopping
spread spectrum, the transmitter hops from frequency to frequency hundreds of
times per second. It is popular for military communication because it makes
transmissions hard to detect and next to impossible to jam. It also offers good
resistance to multipath fading and narrowband interference because the receiver
will not be stuck on an impaired frequency for long enough to shut down commu-
nication. This robustness makes it useful for crowded parts of the spectrum, such
as the ISM bands we will describe shortly. This technique is used commercially,
for example, in Bluetooth and older versions of 802.11.

As a curious footnote, the technique was coinvented by the Austrian-born sex
goddess Hedy Lamarr, the first woman to appear nude in a motion picture (the
1933 Czech film Extase). Her first husband was an armaments manufacturer who
told her how easy it was to block the radio signals then used to control torpedoes.
When she discovered that he was selling weapons to Hitler, she was horrified, dis-
guised herself as a maid to escape him, and fled to Hollywood to continue her
career as a movie actress. In her spare time, she invented frequency hopping to
help the Allied war effort. Her scheme used 88 frequencies, the number of keys

Figure 2.2: Electromagnetic Wave Spectrum [41]

300MHz-3GHz (UHF) and 3GHz-30GHz (SHF) [41].
Nowadays WiFi operates mostly in 2.4GHz or 5GHz frequencies. The bands are also called
ISM because they are license-free and intended for Industrial, Scientific and Medical pur-
poses [17].
The properties of radio waves (3KHz-300GHz) depend on the frequency: With low fre-
quencies they can pass through obstacles well while this reduces with higher frequencies
and lets them bounce off obstacles. The reduction of signal strength through a medium
is called path loss [41]. According to Vijay et al. there are three attributes which influence
the propagation of radio waves and are depicted in Figure 2.3: reflection, diffraction and
scattering. These phenomena are part of our everyday lives. Light is reflected by mirrors
(smooth surface) (a). Scattering (c) is the reason why the sky is blue. Short waves (blue and
violet light) are scattered by nitrogen and oxygen in the atmosphere. Scattering means the
bouncing of a wave in all directions. Diffraction (b) is the spreading and bending of a wave
around an object. Moreover waves may also be refracted. This phenomenon occurs when a
wave changes its medium since the propagation speed changes. An object placed only half
in water shows the effect where the wave changes the angle in the other medium. Finally,
waves may also be absorbed [32].
The propagation of waves therefore does not occur solely in one direction. Waves may
arrive delayed and out of phase and cancel the actual signal. This effect is called multipath
fading [41].
Creating propagation models for wireless communication is very complex and depends on
the environment. For example the propagation is different in free space compared to inside
a building.

The actual transmission of data via electromagnetic waves is achieved by digital modulation
which converts binary data into an analog signal.
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Figure 2.3: Radio Propagation [16]

2.3.1 IEEE 802

The IEEE 802 family defines common physical and link layer components such as Ethernet
(802.3) whose MAC is known as CSMA/CD. 802.5 is Token Ring and 802.11 WiFi. Figure

Figure 2.4: 802 Family [17]

2.4 shows that there are many physical layers (lower right part of the Figure) available for
wireless devices. These differ in bit rates, frequencies and the used modulation schemes.
The Figure shows layer1 and 2 of the OSI model. Note that layer 2 is further divided into
the MAC and Logical Link Control (LLC) layer. The MAC layer coordinates the access of
the medium [17] and the LLC layer primarily identifies the upper layer protocol but was
designed to hide the differences of the lower layers.
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In the following, first the 802.11 standard is depicted. Afterwards the IEEE amendment
802.11s for mesh networks is introduced to the reader.

802.11

The IEEE standard for wireless networks is 802.11. Well known extensions are e.g. 802.11/a-
/b/g/n/ac.
In the following first the modes of operation are illustrated. Afterwards the MAC layer is
explained in depth.

Operation Modes

The first operation mode is the well known pattern where stations talk to a central, mostly
static Access Point (AP). The second mode is known as Ad Hoc mode where no fixed
infrastructure is needed. Instead, stations in range can talk directly with each other [41]. If
stations are out of signal range but in range of another station, additional routing protocols
like Better Approach To Mobile Adhoc Networking (B.A.T.M.A.N.) or Optimized Link State
Routing Protocol (OLSR) enable the creation of multi hop networks known as Mobile Ad
Hoc Networks (MANETs). WiFi-Direct is an operation mode in which one of the clients
that want to communicate with each other, creates a software AP. A special Mesh mode is
based on the 802.11s standard. With the Mesh mode a new kind of networks called Wireless
Mesh Networks (WMNs) arose. MANETs and WMNs are very similar but there are also
some differences. Basically, WMNs in addition to the MANETs, include some kind of fixed
routers with no energy constraints. They are used to connect the mobile nodes to a wired
network. This enables offloading from mobile stations with limited battery for services
which require more resources [30].

MAC

Wireless in contrast to wired stations are half duplex. The reason for this is that a wireless
Network Interface Card (NIC) cannot transmit and receive simultaneously because the
antenna size correlates with the wave length. Therefore, in contrast to Carries Sense Multiple
Access/Collision Detection (CSMA/CD) where collisions can be detected, 802.11’s MAC
relies on channel sensing. The mechanism is called Carries Sense Multiple Access/Collision
Avoidance (CSMA/CA).
In CSMA/CA, each station senses the wireless channel for a short time (DCF InterFrame
Spacing (DIFS)). If the channel is free, the station can send frames. To prevent stations
from sending simultaneously, 802.11 introduced an early backoff mechanism. Collisions
are expensive because always a whole frame is transmitted since collisions cannot be
detected. If a collision occurs, a station performs exponential backoff. After a frame has been
sent, it is acknowledged by the receiver to indicate a successful transmission and all other
stations that the transmission is over. The mechanism is known as Distributed Coordination
Function (DCF) due to the fact that no central coordinator is needed. Figure 2.5 shows 2
problems in wireless networks. The first is called hidden terminal problem because stations
may be out of receiving range from each other but overlap at a station B in the case of the
Figure. The problem is that although C is transmitting to B, A starts a transmission to B as
well because it cannot sense the transmission of C.
The second problem is called exposed terminal problem. It can arise when an overwhelmed
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transmission, it falsely concludes that it may not send to C, even though A may in
fact be transmitting to D (not shown). This decision wastes a transmission oppor-
tunity.

To reduce ambiguities about which station is sending, 802.11 defines channel
sensing to consist of both physical sensing and virtual sensing. Physical sensing
simply checks the medium to see if there is a valid signal. With virtual sensing,
each station keeps a logical record of when the channel is in use by tracking the
NAV (Network Allocation Vector). Each frame carries a NAV field that says
how long the sequence of which this frame is part will take to complete. Stations
that overhear this frame know that the channel will be busy for the period indi-
cated by the NAV, regardless of whether they can sense a physical signal. For ex-
ample, the NAV of a data frame includes the time needed to send an acknowledge-
ment. All stations that hear the data frame will defer during the acknowledgement
period, whether or not they can hear the acknowledgement.

An optional RTS/CTS mechanism uses the NAV to prevent terminals from
sending frames at the same time as hidden terminals. It is shown in Fig. 4-27. In
this example, A wants to send to B. C is a station within range of A (and possibly
within range of B, but that does not matter). D is a station within range of B but
not within range of A.

The protocol starts when A decides it wants to send data to B. A begins by
sending an RTS frame to B to request permission to send it a frame. If B receives
this request, it answers with a CTS frame to indicate that the channel is clear to
send. Upon receipt of the CTS, A sends its frame and starts an ACK timer. Upon
correct receipt of the data frame, B responds with an ACK frame, completing the
exchange. If A’s ACK timer expires before the ACK gets back to it, it is treated as
a collision and the whole protocol is run again after a backoff.

Figure 2.5: Hidden and Exposed Terminal Problem [41]

station may misleadingly decide that a station is busy. The scenario is depicted in the right
side of Figure 2.5. A is transmitting to D (not shown). Therefore B, which wants to send to
C, decides that the channel is busy. The problem is the ambiguity about which station is
sending and results in a missed opportunity to send a frame.
These kinds of ambiguities are reduced by letting each station sense physically and virtually.
The first is the sensing on the channel itself for a valid signal while the latter is achieved by
listening to frames which stations in range sent. All frames include a Network Allocation
Vector (NAV) field which indicates how long the transmission will take. This approach shall
eliminate the exposed terminal problem.
An optional RTS/CTS mechanism tries to reduce the hidden terminal problem by means of
adding messages which check if the channel is free. The idea behind the approach is to
send small frames, where a collision can be neglected. The Ready To Send (RTS) message
indicates that a sender wants to start a transmission. The AP controls the channel and sends
the station a Clear To Send (CTS) message. All stations in range of the AP hence know that
the channel is busy. Note that this mechanism is not often used in practice because it does
not help for short frames and may slow down additionally. Moreover, CSMA/CA already
slows down senders by means of exponential backoff in case of a collision.
There are 2 more mechanisms to improve the overall transmission throughput. The first
is rate adaption. There are different modulation schemes used for different SNR quotients
which vary in terms of throughput and the likelihood that a transmission may fail for a
given SNR. For example 802.11a has rates ranging from 6 to 54 Mbps.
To prevent slow senders from slowing down a fast sender, there is a mechanism called
transmission opportunity (TXOP) which allocates each station the same amount of channel
time also known as air time. Tanenbaum et al. outline an example where a sender with
6Mbps slows down a sender with 54Mbps because both are allowed to send the equal
number of frames. Since the slow sender is nine times slower both end up with a speed
of 5.4Mbps (54 ∗ 1/10 = 6 ∗ 9/10) while with TXOP enabled they end up with a speed
of 3Mbps (6Mbps/2) and 27Mbps (54Mbps/2). The second improvement is the use of
fragmentation. The likelihood for small frames to result in a successful transmission is higher
due to the noisy channel. Therefore frames are split into fragments whereby each has an
own checksum and sequence number so that frames can be acknowledged via a stop-and-
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wait protocol.
Mobile nodes may run on battery and hence energy consumption plays an important role.
Therefore energy management is built into 802.11. APs periodically advertise their presence
in form of a beacon frame which includes the Service Set Identifier (SSID) in each beacon
frame as well as information about the encryption, when the next beacon frame is sent and
additionally a traffic map. This map shows each station whether the AP has buffered frames
while the station has been in sleep mode. The station can then fetch the frames via a poll
message from the AP. A sleep mode can be entered by setting a flag in a frame destined to
the AP. Due to the beacon frame, the stations knows how long it can stop listening to the
channel.
There is a special mode called Automatic Power Save Delivery (APSD) where the AP lets a
station know of the buffered frames by sending a frame directly after it received one from
the station. This allows for frequent traffic such as VoIP to fetch buffered frames faster than
the beacon interval is.
Finally there is Quality of Service (QoS) built into the 802.11 protocol. Depending on the
priority there are frame spaces which are shorter or longer than the DIFS frame spacing.
Interframe spacing gives high priority traffic such as VoIP the opportunity to send before
others by waiting only until the specific time instead of the default DIFS [41].

802.11s

Mesh networks are very different compared to AP-based networks. Every node is assumed
to take part in the process of forwarding frames so that a multi hop network can be created.
In 2011, IEEE published an amendment3 for mesh networks called 802.11s. Unfortunately,
the author did not have access to the official document, therefore a whitepaper from Henry
is used as source in the following.
In contrast to IP-based routing, 802.11s focuses on the link layer for routing, called Path Selec-
tion because it operates on layer 2. The mandatory Hybrid Wireless Mesh Protocol (HWMP)
consists of both proactive and reactive components. In the first approach, a route is discov-
ered on demand only in contrast to the proactive approach [19]. HWMP is based on Ad
Hoc On Demand Distance Vector (AODV) [20].
Peer discovery is achieved by beacon frames, where mesh stations advertise their presence
as well as mesh specific settings. Afterwards a peering between the mesh stations is done
with special peering frames. The peering contains information about the supported rates,
power management capabilities, supported channels, mesh security etc.
802.11s comes with a new authentication scheme called Simultaneous Authentication of
Equals (SAE) which is based on the Dragonfly authenticator and uses a shared secret to
secure the communication between 2 peers. Moreover, 802.1X can be used instead but
requires stations to be in range of the authenticator service.
Furthermore, channel access coordination is done by a new Distributed Coordination Func-
tion called Mesh Controlled Channel Access (MCCA).In a Wireless Mesh Network some
nodes may be running on battery such as cell phones or sensor nodes. Therefore, extra
energy modes have been developed. Figure 2.6 shows a mesh network with three different
energy modes. In the Active mode no power management is done, hence the station par-
ticipates in frame forwarding and path discovery. The Light sleep mode is comparative to
the APSD mode in the standard 802.11 protocol: The mesh station can sleep during beacon

3http://standards.ieee.org/findstds/standard/802.11s-2011.html
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frames and then fetch the buffered data from its neighbours. In a more advanced sleep
mode, a node can decide to not take part in the frame forwarding process. It only sends and
receives frames destined for itself.
Figure 2.6 points out that mesh stations may signal neighbours individual power manage-
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A, which means that B is in awake state and available for any management or data frame 
that A would need to send. 
 
The same logic can apply to any other link. In Figure 7, D and B are in deep sleep mode, 
which means that they decided not to use their link. D is in active mode with C, which means 
that D is available for any frame coming from C. At the same time, C announced a Light 
Sleep mode to D and B, which means that C will wake up for B and C beacons to check if 
they have any buffered traffic. 
 
Figure 7: Example mesh power save scenario 

 

 
In extreme scenarios, a mesh station can declare itself in deep sleep mode for all its 
neighbors, giving the station the control to decide when to send and when to receive frames. 
This would allow a station to never forward other stations traffic, and be active in the MBSS 
only for its own traffic. 802.11s is very flexible on the conditions upon which a mesh station 
can decide to change its power mode for one or several neighbors, leaving a great liberty in 
vendor implementations to adapt the power mode to local architectural conditions. 

 
 

Managing Collisions and Traffic Priorities 

 
In indoor standard networks, collisions are limited to a few cells, and are already a critical 
issue in dense deployments. This issue is worsened for mesh networks. Mesh access points 
are built for redundant paths. This means that a single mesh station is typically in range of 
several other mesh stations. Mesh access points typically employ powerful amplifiers and 
antennas. Access points in communication with one another must be on the same channel. 
These characteristics mean that QoS and collisions are two major concerns in mesh 
networks. Therefore, a first concern is to avoid collisions. This avoidance is difficult to achieve 
because frames will be transmitted over the wireless medium for several hops, and each 
station has little to no visibility of the medium state beyond its own neighbors. However, 
neighbors can communicate, and 802.11s describes several mechanisms by which 
neighbors can communicate medium-related information and work together to reduce 
collisions and congestion. 

Figure 2.6: 802.11s Power Management Scenario [19]

ment settings. The link between B and D is unreliable, therefore both enter the Deep sleep
mode for each other. C enters Light sleep mode for both B and D.
Routing therefore incorporates energy constraints of mobile nodes. HWMP in contrast to IP
routing, integrates not only the hop count but also the so called airtime metric. The airtime
incorporates data and bit error rate between each pear. In the default reactive mode, a
route is only determined fon demand. If a station A wants to send to a station Z, a Path
Request (PREQ) is broadcasted to each peer to determine the path to Z. All nodes which
receive the PREQ forward the request until it reaches Z. At the end, multiple PREQs may
arrive at Z, but a Path Reply (PREP) is only send back through the best path. The past path
is determined by means of hop count and metric. The metric for a given link is added by
each mesh station which forwarded a path selection frame. The airtime metric makes 802.11s
special because the wireless nature is integrated into the routing algorithm [19].
To provide a short conclusion, 802.11s is the IEEE amended standard for Wireless Mesh
Network. A first implementation4 is already integrated into the Linux kernel [20]. 802.11s
comes with a routing algorithm that takes the wireless nature into account for routing
decisions. This enables 802.11s to use a different network layer protocol than IP, because it
uses the mac layer for routing. Moreover new power management nodes tailored towards
the special energy constraints in Wireless Mesh Networks have been developed.

2.4 Networking in Linux

The functionality of Linux is used to implement the emulation properties of MiniWorld.
The basics which are required to understand the implementation details of MiniWorld are
outlined in the following. First, ethernet bridges and the flow of frames through the Linux
kernel are introduced in Section 2.4.1 to the reader since Linux bridges are used by both

4http://www.o11s.org
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Bridged network backends.
Linux’s TC is used as link impairment in the Bridged network backends. A brief introduction
to the TC system is provided in Section 2.4.2. The WiFi network backend relies on a Linux
WiFi driver, hence the driver architecture of Linux is illustrated in Section 2.4.3.

2.4.1 Bridge Netfilter Hooks

Ethernet bridging (802.1d) allows LAN segments to be interconnected on the data link layer.
A bridge is the implementation of a software switch inside Linux. In Linux, a bridge is
represented as just another NIC. The user-space commands brctl and ip (iproute2 package)
can be used to enslave a NIC to the bridge and control the internal bridge options.
An interface can only be enslaved to one bridge.
Netfilter is a Linux framework which offers kernel modules several hooks: By registering
callback functions, they are integrated into the network handling code.
Figure 2.7 shows netfilter hooks used for the ebtables and tc commands. The first enables
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Figure 2.7: Linux Network Internals

the administration of a link layer firewall while the latter offers traffic control such as
bandwidth limiting and QoS.
Moreover, the Figure outlines how packets traverse parts of the Linux network stack. There
are three different levels depicted in the Figure. On the lowest level packets are sent and
received from a NIC. The next layer shows the integration of the Linux traffic control
facilities. First frames/packets are classified and afterwards a Queuing Discipline (QDisc)
algorithm schedules the packets.
The upper layer shows the hooks used by ebtables. There are three different tables: broute,
filter and nat. The first is responsible for deciding whether packets shall be bridged or
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routed. The second offers MAC filter operations. The last table is used for Network Adress
Translation (NAT).
Each table consists of several chains. These are illustrated in the right part of the upper level
in Figure 2.7. The table association is shown by the colors around the boxes.
Packets traverse the BROUTING chain where ebtables decides whether a packet shall be
routed or bridged. The default setting is bridging.
Afterwards NAT operations can be performed in the PREROUTING chain before the bridg-
ing decision is taken.
If the destination MAC of the current packet is used by a local NIC, the packet is passed to
the upper layers of the network stack after it traversed the INPUT chain. The Forwarding
Database (FDB) is the mapping between MAC addresses and ports. Each entry is associated
with a timeout so that old entries are deleted after some time if they do not get updated.
If no entry in the FDB exists, the bridge floods a frame to all its active ports. Through the
flooding mechanism, the bridge learns the MAC addresses of NICs and to which port they
are plugged in.
Otherwise the packets are flooded over all bridge ports. Therefore, packets go through the
FORWARD chain of the filter table. This chain enables the creation of a firewall by using
the MAC addresses or ports. Finally the packets go through the POSTROUTING chain and
leave the NIC after they went through the egress traffic control system [12].

2.4.2 Traffic Control

Traffic shaping on Linux basically works by gaining control over a queue in which packets
are enqueued. Each NIC has an incoming and an outgoing queue for packets. They are
called ingress and egress respectively. An algorithm that manages a queue is called QDisc.
The QDisc which is attached directly to the NIC is called Root QDisc. Such a QDisc can
have configurable classes to handle provide different link impairments. It is called a classful
QDisc. The inner elements are called classes. A Handle is used to identify QDiscs and classes
[23]. It is a 32 bit field split into a major and a minor number. The major number of classes
have to match the parent’s QDisc minor number [38]. Filters can be used to redirect certain
traffic to a class.
A classless QDisc provides no further inner division. The default QDisc is called pfifo fast
and applies only some QoS to the traffic by classifying traffic according to the Type of
Service (ToS) flag of IP packets [23].

2.4.3 Linux Wireless Drivers Overview

Figure 2.8 shows the integration of a Linux wireless driver in the Linux system and the
interaction of user-space programs with the kernel-space. First, a driver is loaded via the
insmod system call (top left of the Figure) which may happen automatically during boot or
manually. Moreover, the system call initializes the driver, afterwards the hardware (NIC)
and register functions in the kernel-space used e.g. by the TCP/IP stack for the transmission,
reception and management (Transmit functions and Receive functions in the Figure).
Packets are received and sent from user-space by the send and receive socket system calls. A
user can now send packets by leveraging the send system call which passes the data to the
TCP/IP stack. The stack adds the IP and TCP layers to the payload and uses the Transmit path
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Abstract—The purpose of this study is to analyze the open 
source IEEE 802.11 wireless local area network (WLAN) stack 
implementation for further enhancement and implementations.  
We discuss the IEEE 802.11 WLAN implementation in the latest 
Linux kernel. This includes a functional breakdown of the driver 
and the overall flow of information via functions. We also survey 
the specific implementation methods used in the WLAN Linux 
stack. We compare the legacy driver implementation with the 
newer Linux kernel implementation. For reference, the Atheros 
network device driver is taken as an example to discuss the 
WLAN structure, stack and driver implementation.  
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I.  INTRODUCTION 
WLAN devices are common in all personal computing 

devices such as PDAs, mobile phones and laptops. IEEE 
802.11 is the de facto standard used for WLAN devices. The 
standard has evolved over the last ten years and has spawned 
into a number of subgroups such as 802.11b, 802.11a, 802.11g, 
and 802.11n [1] [2]. Each subgroup is an enhancement over the 
basic 802.11 in functionality and/or performance. The newly 
developed standards are backward compatible and support 
legacy systems. This makes it feasible for existing hardware to 
work with new products. 

In the case of software and hardware implementations, 
WLAN will be capable of handling all mandatory functions 
proposed by the standard. Depending on the vendor, they may 
implement some optional functions and proprietary features. 
The Linux kernel WLAN drivers developed by major vendors 
implement most of the mandatory functions while the others 
are still in development. The modes of operation supported by 
any WLAN device are ad-hoc, infrastructure, mesh, wireless 
distribution system (WDS), virtual access point (VAP), virtual 
interface and monitor [3]. Peer to peer connections are made in 
ad-hoc mode. In this mode, each WLAN device communicates 
directly without any central coordinator. In infrastructure 
mode, an access point (AP) is the coordinator for every client. 
All traffic passes through the AP. The mesh mode is an 
extension of ad-hoc mode. The salient feature of this mode is 
multi hop transmission. WDS has a bridging similar to Ethernet 
and also provides repeater functionalities. VAP is a multiple 
virtual AP with single hardware device. Virtual interface is 
multiple logical interfaces using a single physical interface. 

Monitor mode is used for passively sniffing the air interface. 
The standard for infrastructure and ad-hoc is IEEE 802.11a/g/n, 
for mesh is IEEE 802.11s and for security is IEEE 802.11i. 

II. LINUX KERNEL 
Linux kernel is an open source operating system kernel. 

The Linux kernel has a modular architecture. Most of the 
drivers for the peripheral hardware are built as loadable 
modules. They are loaded when new hardware is attached or at 
boot time. When any module is loaded, they export their 
functions to the kernel space. 

 
 

 

 
Figure 1.  Linux kernel interaction 

The user space applications interact with the kernel space 
modules through system calls. A simplified Linux kernel 
network stacks interaction between user applications, TCP/IP 
stack, network device driver and hardware is shown in Fig. 1.  
The operations explained in the figure can be categorized as 
configuration/management, transmission path, and receive path 
[4]. 

Insmod is a user level function that loads any kernel 
module [5]. The network device drivers may have multiple 
kernel modules based on functionalities such as hardware 
module and protocol module. Insmod calls initialization 
functions of each module. This initialization function initializes 

Figure 2.8: Integration Of A Driver In The Linux Kernel Network Stack [44]

to send the packet to the driver. The driver triggers a Transmit Interrupt and signals the NIC
that a frame needs to be delivered.2 Profiling IEEE 802.11 Performance on Linux-based UAVs

Fig. 1. Architecture of the Linux wireless subsystem [6].

data rates, is a typical interface deployed in wireless networks and, as an initial
step, we assume the UAVs are equipped with such wireless interfaces. Modeling
as well as handling the limitations due to the motion of the vehicles on the
other hand is a challenging task. As illustrated in [3, 7], collecting real-world
measurement data over an experimental testbed of networked aerial vehicles can
prove very useful to achieve this goal.

One possibility to gather information on the wireless transmission quality
is the use of the Linux wireless subsystem [6]. Even more detailed information
can be extracted from packet traces by utilizing the monitor mode in the Linux
wireless subsystem [4]. In this paper, we provide a methodology to profile the
wireless links for Linux-based networked aerial vehicles. We present two options
to collect link quality information and monitor the 802.11 wireless interface. We
illustrate the use of our approach via some real-world measurements between a
UAV and a ground control station.

The rest of the paper is organized as follows. Section 2 provides the architec-
ture of the Linux wireless subsystem. In Section 3, two methods for Linux-based
802.11 measurements are introduced. The measurement results for a 802.11a-
based network are presented in Section 4. Section 5 concludes the paper.

2 Architecture of the Linux Wireless Subsystem

The Linux wireless subsystem [2] consists of several modules, which handle the
configuration of the IEEE 802.11 wireless hardware and manage the transmission
of the data packets [6]. Figure 1 depicts the architecture of the subsystem. In
the wireless subsystem (as of early 2012) the configuration is made in the user

space (e.g., associating to an access point or setting the transmit power) and the
Linux Netlink [5] interface nl802113 is used to access the cfg802114 module in
the kernel. The cfg80211 module implements configuration options which are
common in IEEE 802.11 platforms. It also performs active tasks like scanning
the network for access points (APs) and manages the encryption of the wireless
transmission channel.

The mac80211

5 module implements the medium access layer in software,
which can be used by wireless devices that expect the MAC-layer to be imple-

3 http://linuxwireless.org/en/developers/Documentation/nl80211
4 http://linuxwireless.org/en/developers/Documentation/cfg80211
5 http://linuxwireless.org/en/developers/Documentation/mac80211

Figure 2.9: Linux Wireless De-
sign [26]

The same proceeding applies then a frame is received:
First an interrupt is triggered so that the driver can receive
and process the frame from the hardware. In each step
to the user-space, the corresponding layers are discarded
from the PDU depending on the type of socket [44].
Finally the state of a NIC is configured by tools such as
ifconfig and iw.
Figure 2.9 shows that these user-space tools interact ei-
ther with the nl80211 interface or the deprecated wireless-
extension (wext).
Nl802115 is the new 802.11 interface based on netlink6

which is used for communication between kernel and
user-space via the socket facility and a new domain
AF NETLINK7 instead of e.g. SOCK STREAM.
nl80211 uses cfg80211 which handles the configuration options for 802.11. This includes
station management such as adding, removing, modifying and dumping stations. Scanning
of APs, setting the wifi channel, bitrate and interface modes like the mesh mode are handled
by cfg80211 [44, 26].
Most new wireless cards do not implement the MAC layers inside the device itself. Instead,

5https://wireless.wiki.kernel.org/en/developers/documentation/nl80211
6http://www.ietf.org/rfc/rfc3549.txt
7http://man7.org/linux/man-pages/man7/netlink.7.html
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they rely on mac80211 to handle the MAC layer. This approach is called softmac and lowers
hardware costs. For example 802.11 frame creation and rate control algorithms are imple-
mented inside mac80211[26]. Wireless drivers interact with mac80211 via the ieee80211 ops
callback interface.

2.4.4 Relation To MiniWorld

MiniWorld uses ebtables in the Bridged LAN network backend to create a firewall based
on the bridge ports. This allows MiniWorld to control with whom a NIC is allowed to
communicate. Linux bridges are used for both Bridged network backends. Furthermore,
TC on egress is used to provide basic link effects such as bandwidth and delay. The WiFi
network backend leverages a Linux driver which simulates wireless NICs inside the Virtual
Machines (VMs).

2.5 Virtualization

Virtualization is an essential technology nowadays. Computer science is all about abstrac-
tion and virtualization is just another kind of abstraction. It enables multiple OSs to run on
the same hardware by providing the illusion to each system that it runs alone and has full
control over the underlying hardware. Actually, each virtualized OS, also called VM, is run
by a hypervisor.
The abstraction from the hardware to the hypervisor allows better resource distribution
and usage. Multiple VMs can run on the same server without affecting each other, limited
only by the availability of resources. Using one server e.g. to host an in-house chat software
system on a server with much resources is not very clever and not cost-efficient.
Moreover, VMs provide security to a software which is security-critical. Even if an attacker
can break into the Virtual Machine, he/she still cannot break out of the hypervisor, also
called Virtual Machine Monitor (VMM).
In recent years it enabled Amazon WebServices etc. to provide Infrastructure as a Ser-
vice (IaaS) clouds where infrastructure is provided dynamically in terms of VMs. Moreover,
it enables the usage of elastic services and due to its abstraction it is much easier to migrate
a VM than a process. This offers great opportunities for load balancing when resources are
fully exploited on a server.
The aforementioned hypervisor-based virtualization approach is not the only one. Instead
of virtualizing a full system and providing the illusion of a specific or the actual hardware
to an OS, so called Lightweight Virtualization enables the separation of processes and is much
more efficient but has the limitations of being only able to run software that is supported by
the OS Application Binary Interface (ABI) and kernel.
Both approaches have their advantages and disadvantages.
MiniWorld uses full system virtualization whereas most related work makes use of process
isolation. Both virtualization technologies are explained in the following.
Note that the following is basically based on Tanenbaum et al. [40].

2.5.1 Hypervisor Virtualization

Virtual Machine Monitors can be either integrated into an existing OS or run directly (bare
metal) on the hardware. Figure 2.10 visualizes both approaches. The left side of the Figure
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Figure 7-1. Location of type 1 and type 2 hypervisors.

on the x86 market was VMware Workstation (Bugnion et al., 2012). In this sec-
tion, we introduce the general idea. A study of VMware follows in Sec. 7.12.

Type 2 hypervisors, sometimes referred to as hosted hypervisors, depend for
much of their functionality on a host operating system such as Windows, Linux, or
OS X. When it starts for the first time, it acts like a newly booted computer and
expects to find a DVD, USB drive, or CD-ROM containing an operating system in
the drive. This time, however, the drive could be a virtual device. For instance, it is
possible to store the image as an ISO file on the hard drive of the host and have the
hypervisor pretend it is reading from a proper DVD drive. It then installs the oper-
ating system to its virtual disk (again really just a Windows, Linux, or OS X file)
by running the installation program found on the DVD. Once the guest operating
system is installed on the virtual disk, it can be booted and run.

The various categories of virtualization we have discussed are summarized in
the table of Fig. 7-2 for both type 1 and type 2 hypervisors. For each combination
of hypervisor and kind of virtualization, some examples are given.

Vir tualizaton method Type 1 hyper visor Type 2 hyper visor
Vir tualization without HW support ESX Server 1.0 VMware Wor kstation 1
Paravir tualization Xen 1.0
Vir tualization with HW support vSphere, Xen, Hyper-V VMware Fusion, KVM, Parallels
Process virtualization Wine

Figure 7-2. Examples of hypervisors. Type 1 hypervisors run on the bare metal

whereas type 2 hypervisors use the services of an existing host operating system.

7.4 TECHNIQUES FOR EFFICIENT VIRTUALIZATION

Virtualizability and performance are important issues, so let us examine them
more closely. Assume, for the moment, that we have a type 1 hypervisor sup-
porting one virtual machine, as shown in Fig. 7-3. Like all type 1 hypervisors, it

Figure 2.10: Type 1 Hypervisor (left side) vs. Type 2 Hypervisor (right side) [40]

shows a type 1 hypervisor. Xen, VMware ESXi, and Microsoft Hyper-V are examples of such
a Virtual Machine Monitor. The Figure illustrates that the hypervisor is running directly
on the hardware. This is in contrast to a type 2 hypervisor8 shown on the right side of
the Figure, there the VMM is running inside an Operating System, mostly as a user-space
process combined with a kernel module. Therefore it is also called hosted supervisor. Both
Figures show that full system virtualization enables to emulate arbitrary Operating Systems
without the knowledge and modification of such a system.
The x86 platform is very hard to virtualize without support from the processor. This is due
to the architecture where instructions have different semantics depending on the processors
protection ring. These instructions are called sensitive instructions hereinafter. The x86 plat-
form has four rings, where ring 0 is the most privileged and therefore the kernel operates
inside it. The so called kernel mode allows any processor instruction to be executed. User
processes are run in ring 3 called user mode. Hypervisors leverage the fact that the rings
1 and 2 are unused, therefore a guest operating system is running in ring 1. If the guest
OS tries to execute a privileged instruction, a trap9 is forwarded to the hypervisor which
can perform some sanity checks and then decide whether it shall perform the instruction
on behalf of the guest OS. The separation into different protection rings prevents other
rings e.g. from accessing the kernel memory. Therefore the guest is not allowed to execute
sensitive instructions. Note that this trap and emulate approach only works with recent pro-
cessors which have a special virtualization extension10, called VT in the following. With this
extension, a set of operations which shall be trapped can be set with a hardware-bitmap by
the Virtual Machine Monitor. E.g. I/O always traps because the guest has no direct access to
the hard disk. A paper from Popek and Goldberg states that a platform is only virtualizable
if the sensitive instructions are a subset of the privileged ones which is basically achieved
with the virtualization extension [40].
Even without this special hardware support, hypervisors are able to virtualize the x86
platform. For that purpose, a technique called binary translation is used where the code of
the guest kernel is rewritten so that sensitive instructions are replaced by a call to the hyper-
visor. The rewriting process makes use of a cache for already converted basic blocks11. Guest

8KVM, Virtual Box and Parallels are an example of type 1 Virtual Machine Monitors.
9A trap is a special kind of interrupt caused by an exception or fault.

10Secure Virtual Machine (SVM) for AMD, Virtualization Technology (VT) for Intel processors
11A basic block is a sequence of instructions ending with a flow control altering command such as jmp

instruction
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processes can be ignored at all because they are executed in an unprivileged protection
ring. Additionally, there are many optimizations so that binary translation achieves a good
performance.
Due to the protection rings and having a guest kernel unaware of virtualization which
tries to execute privileged instructions, a trap handler has to be installed in the host kernel.
Therefore, most type 2 hypervisors have a kernel module allowing it to operate in ring 0.
The left part of Figure 2.11 shows the virtualization approach previously described (with
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(or wrong)—yet—we think we do right by exploring the similarity between hyper-
visors and microkernels a bit more.

The main reason the first hypervisors emulated the complete machine was the
lack of availability of source code for the guest operating system (e.g., for Win-
dows) or the vast number of variants (e.g., for Linux). Perhaps in the future the
hypervisor/microkernel API will be standardized, and subsequent operating sys-
tems will be designed to call it instead of using sensitive instructions. Doing so
would make virtual machine technology easier to support and use.

The difference between true virtualization and paravirtualization is illustrated
in Fig. 7-5. Here we have two virtual machines being supported on VT hardware.
On the left is an unmodified version of Windows as the guest operating system.
When a sensitive instruction is executed, the hardware causes a trap to the hypervi-
sor, which then emulates it and returns. On the right is a version of Linux modified
so that it no longer contains any sensitive instructions. Instead, when it needs to do
I/O or change critical internal registers (such as the one pointing to the page
tables), it makes a hypervisor call to get the work done, just like an application pro-
gram making a system call in standard Linux.

Unmodified Windows Modified Linux

Trap due
to sensitive
instruction

Trap due
to hypervisor
call

ParavirtualizationTrue virtualization

MicrokernelType 1 hypervisor

Hardware

Figure 7-5. True virtualization and paravirtualization

In Fig. 7-5 we have shown the hypervisor as being divided into two parts sepa-
rated by a dashed line. In reality, only one program is running on the hardware.
One part of it is responsible for interpreting trapped sensitive instructions, in this
case, from Windows. The other part of it just carries out hypercalls. In the figure
the latter part is labeled ‘‘microkernel.’’ If the hypervisor is intended to run only
paravirtualized guest operating systems, there is no need for the emulation of sen-
sitive instructions and we have a true microkernel, which just provides very basic
services such as process dispatching and managing the MMU. The boundary be-
tween a type 1 hypervisor and a microkernel is vague already and will get even less
clear as hypervisors begin acquiring more and more functionality and hypercalls,
as seems likely. Again, this subject is controversial, but it is increasingly clear that
the program running in kernel mode on the bare hardware should be small and reli-
able and consist of thousands, not millions, of lines of code.

Figure 2.11: Full Virtualization vs. Paravirtualization [40]

or without VT). In the example there is a type 1 hypervisor, but of course a type 2 VMM
can do true virtualization too. The right side of the Figure outlines another approach called
Paravirtualization. Instead of providing the illusion that a guest OS is running on the real
hardware, modifications to the kernel are done so that it cooperates with the Virtual Ma-
chine Monitor. Hypercalls are used between the paravirtualized guest and host kernel in the
same manner a user-space application performs system calls to the kernel. The drawbacks
of this approach are that the guest has to be modified but results in better performance on
the other side [40].

KVM & Qemu

In the following the KVM and Quick EMUlator (Qemu) are depicted because MiniWorld
uses KVM as a type 1 hypervisor.
KVM runs VMs as a normal user processes in Linux. A kernel module provides access to a
character device at /dev/kvm. From a user-space perspective ioctl calls to the character
device enable to start a VM, allocate memory for a VM, run a virtual CPU, read and write
registers as well as to inject interrupts into the Virtual Machine. Note that KVM only works
with VT enabled processors [25].
KVM works hand in hand with Qemu. In contrast to KVM, Qemu is able to emulate not
just x86 CPUs but also PowerPC, ARM etc. There are 2 modes in which the emulator can
run. The first is used for full system virtualization whereas the second is able to emulate a
program compiled for a different processor architecture and is called user mode emulation.
Moreover, it runs on all common platforms such as Linux, Windows and Mac. The android
emulator is built on top of Qemu because it is capable of emulating the ARM CPUs [5, 25].
Qemu is a dynamic translator. This means that instructions for a different CPU are translated
to the host CPU. The translation process uses a cache for performance reasons. Instructions
are split into micro operations which are manually coded and compiled with GCC. The
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translations of the micro operations are then cached. Dyngen, a part of Qemu can then create
a dynamic code generator based on a sequence of micro operations as input.
Qemu is not only capable of emulating CPUs. It has many devices it can emulate such as
NICs, mouse, keyboard, disks etc. [5].
KVM leverages Qemu to provide these device models to a guest VM.

2.5.2 Container Virtualization

In recent years container virtualization became more and more popular. Especially Docker
came up in the cloud environment because it allows to ship an application in a container
which requires no further setup or installation. Instead, developers can create containers for
their software and upload them to the Docker Hub, a public repository for Docker images.
The ancestor of containers is the chroot command. It allows to restrict file system access to a
specific directory which is then treated as the new root directory. The change root approach
is not very secure but shows the first attempts to isolate processes in terms of file system
access.
Container virtualization is all about isolating a process. In Linux, there are different names-
paces which allow the isolation of a specific resources. E.g. network namespaces enables each
container to have an own network stack where routing tables, ports and interfaces are not
conflicting with the network stack of the OS outside the container [13]. The namespaces
man page12 lists additionally namespaces for Inter-Process Communication (IPC), mounts,
PIDs, user, group IDs etc. They enable processes to be completely isolated from each other.
Even different users can exist inside a container.
Containers additionally make use of cgroups13 which allow processes to be organized into
control groups so that resources can then be limited and monitored.
Despite Docker there is also Linux Containers (LXC) which enables the usage of containers
on a lower level than Docker [13].
Most related work in the field of network emulators use lightweight virtualization whereas
MiniWorld uses full system virtualization to provide more flexibility in what shall be tested.
Moreover, Docker containers are used in an experiment in the evaluation Section.

12http://man7.org/linux/man-pages/man7/namespaces.7.html. Last viewed on 10.11.16
13http://man7.org/linux/man-pages/man7/cgroups.7.html. Last viewed on 10.11.16
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3 Related Work

Related work of network simulators is discussed only briefly in Section 3.1. Network
emulation is presented in Section 3.2. The Section starts by discussing a software switch
with link impairment features which is used by a network backend in MiniWorld (VDE).
Moreover, since most related work in the field of network and also WMN emulation, lack a
real WiFi interface in their network emulation approaches, WiFi virtualization approaches
are discussed in Section 3.3. MiniWorld’s WiFi network backend is based on the WiFi
virtualization solution depicted in Section 3.3.3.
Systems which incorporate node virtualization and network emulation are illustrated in
Section 3.4.

3.1 Simulation

Simulation is a very old technique. Implementations make use of extra libraries, frameworks
and even new simulation languages and Domain Specific Languages (DSLs) have been
developed for discrete-event simulators. Examples of new simulation languages are Csim,
Yaddes, Maisieand Parsec which are all derived from C and C++. Apostle and TeD are
developments of Domain Specific Languages in this field [46].
New technologies often require new simulators for testing since research needs vary strongly.
Therefore, simulators are not often reused and instead custom solutions have been devel-
oped. Moreover, very old simulators are often not available any more in terms of code or
based on old technologies. In the following a short overview of simulators is provided.
Weingärtner et al. [46] provide a good overview of MANET simulators which are mostly
from the last ten years. The most used simulator is ns-2. It is written in C++ and very
precise physical layer models are available. Many extensions are provided by researchers
and the community. It was primarily designed for wired networks, but extensions for well
known MAC layers such as 802.11 and Bluetooth have been added. Mobility is provided by
projects such as GEMM project, Graph Mobility project and the Obstacle mobility model.
The simulator is written in the C++ language and requires scenarios to be created in the
same language. The simulation can be controlled with the help of oTcl scripts which also
define the network topology. The simulator lacks modularity and scalability is not that
good. Therefore, a complete and independent new version called ns-3 has been created.
Pdns can be used to boost ns-2 performance by distributing multiple ns-2 processes across
the network. The network is divided into subnets which are then simulated on many cores.
OMNet++ is written in C++ and provides MAC layers for 802.11a/b/g and Bluetooth.
According to Weingaertner et al. it is the most widely used commercial simulator [46].
DIANEmu aims at testing application protocols [22]. Other MANET simulators are Glo-
MoSIM, SimPy, JiST, QualNet, SWANS, GTNets, Jane, NAB, ANSim, Madhoc and the Jane
simulator [46, 22].

21



3 Related Work

3.2 Network Emulation

In the following, network emulation approaches are presented. First Netem, a Linux QDisc
is presented which offers certain link impairment functionality. Then, the VDE user-space
switch is depicted in Section 3.2.2. It serves as the basis for MiniWorlds’s VDE network
backend. Afterwards, a SDN based switch called Open vSwitch is illustrated. Finally, WiFi
virtualization approaches are discussed in Section 3.3.

3.2.1 Netem

Netem is a kernel module which is part of the Linux TC system. It offers link impairment
functionalities via a QDisc. The link impairment includes packet delay, loss, duplication and
reordering. Delays are defined by statistical distributions which are available via iproute2.
Moreover, own distribution tables can be build from own test data. The loss of packets is
controlled by percentage and a correlation value. Redundant routes can be simulated with
duplicate packets. Bandwidth shaping is not included, but netem can be combined with the
Tocken Bucket Filter (TBF) [18] or Hierarchical Token Bucket (HTB) QDisc.
According to the author of Netem, it has been built to validate the implementation of the BIG
TCP and TCP Vegas algorithms inside the Linux kernel (2.6). The author explicitly claims
that the internet is to complex to be simulated by netem, since it can not be depicted by a
model [18].
Salsano et al. [39] provide a study of loss models and added more sophisticated loss models
to netem. They integrated the Gilbert-Elliot and their proposed 4 State Markov-Model to
iproute2 version 3.2.0.
Netem is used for link impairment by MiniWorld’s Bridged LAN and Bridged WiFi network
backends.

3.2.2 VDE

VDE is the acronym for Virtual Distributed Ethernet. It is meant to build a virtual network
and supports hypervisors such as Qemu, Bochs and MPS. It is a distributed software
ethernet switch running in user-space. Figure 3.1 depicts the architecture of VDE. There are
2 machines. The first is a UML instance, the second a Qemu node. Both are connected to a
switch which is interconnected via a VDE PLUG over the internet.
The software packages consists of the programs vde switch, vde plug, wirefilter etc. The first is
the virtual switch, the second ties multiple switches together and the third enables network
emulation.
The switch can operate as switch or hub. It has several ports, where so called cross cables
can be plugged in with the help of vde plug.

vde plug uses a so called dpipe which redirects the stdout of one program to the stdin of
another and vice versa. Therefore, it is a bidirectional pipe. Real computers can be integrated
with the help of tap sockets, plugged into a switch port. Because vde plug uses pipes, the
switches can be connected e.g. via ssh or netcat. They only need to write the data to stdout.
This design allows the program wirefilter to emulate packet loss, delay, duplicate packets,
bandwidth, packet queue length, corrupted bits per packet and packet reordering by simply
modifying the data read from stdin of another vde plug.
Both vde switch and wirefilter can be controlled via a Unix Domain Socket (UDS).
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An article in the open-mesh wiki1 proposes a patch to VDE called color-patch. Their intention
is to use VDE together with Qemu to evaluate the B.A.T.M.A.N. routing protocol.
The patch build for VDE version 2.3.22 transforms the virtual network build by VDE, which
ends in a single broadcast domain, into a one-hop-network. This means that packets can
only travel one hop, if 2 switches are interconnected. Each port has a color. Packets are only
allowed to be forwarded if the colors between the 2 ports differ. An example shows that the
VM which is connected to the switch can have color 1 while other interconnecting ports
have color WiFi. Therefore a packet from host A to B can only be forwarded on this path
[11, 43].
Britos et al. [7] presented 2015 a network emulator called BAMNE which leverages the
previously described color-patch and VDE together with VirtualBox. The emulator is tai-
lored at performing tests with B.A.T.M.A.N.. The paper lacks experiments which show the
scalability and performance of the solution.
The approach is not new. A paper from 2011 already showed first experiments using the
aforementioned solution to evaluate the overhead of B.A.T.M.A.N., but used Qemu instead
as the hypervisor [15].

3.2.3 Open vSwitch
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Figure 3. A VDE with remote clients

The second example (see Fig. 2) is a slight variation of the first. The virtual network infras-
tructure is connected to the host operating system by the tuntap support. THe host computer
is then logically connected to the VDE as it had a physical interface to a real ethernet. All the
methods used for routing, bridging, firewalling, packet filtering and shaping can be applied to
this configuration. Is it possible to configure the host just as a packet forwarded (packer routing)
or as an IPv4 NAT/masquerading [8] firewall with DHCP support [6] or as an IPv6 router with
network autoconfiguration [18]. All the tools that can be installed on a real boundary machine
of an internal network like DNS forwarders, service proxies, mail agents etc. can be installed on
the host machine. The VDE is interconnected to the Internet (or the external network) as it were
a standard real ethernet. Obviously all the installation and management of the network tools
and virtual interface on the host computer operating system needs administration privileges (root
access). This configuration can be used to connect virtual machines to a real network, putting in
place all the security structures needed. It is possible to test network install or upgrade procedures
for operating systems or applications and debug them with no need of real hardware reboots. Disk
images or Copy-On-Write tecniques can be used to return to a previous checkpoint in the emulated
system status in case of failures.

Figure 3 shows the usage of a vde cable. This is similar to the first example proposed: the
network topology is perceived in the same manner by the users of the two virtual machines. A user
of the Debian Linux system running on the Qemu emulator open a connection on the User-Mode
mandrake Linux. The two virtual machines operates as they were on the same ethernet local area
network. With this configuration it is possible to run distributed system emulations on a cluster
of workstation or it is possible to join and test the services running on a remote virtual network
using a local virtual machine. A vde cable can also put in place between two vde switches running
on the same host computer. This configuration can be used to interconnect clusters of virtual
computer and reduce the load on a single switch (if the pattern of traffic is consistent with the
virtual topology) or to test the reliability of the application in case of network partitioning. In fact
starting and stopping the vde cable leads to the simulation of a network partition. It is simple to
create interconnection tools for the vde cable able to simulate packet dropping, delays and other
network behaviors very useful for tests.

The scenario depicted in figure 4 is the same of 3 but the interconnection to the host Operating
System and then the possibility of routing virtual nerwork traffic to the Internet. This network

UBLCS-2004-12 5

Figure 3.1: VDE Architecture [11]

In the Software-Defined Networks (SDN) ap-
proach, switches are controlled by a well defined
interface called OpenFlow [33].
There are hard- and software based SDN
switches that implement the OpenFlow protocol.
The de facto standard software SDN switch is
open vSwitch. Figure 3.2 shows the architecture
of Open vSwitch. It is part of the recent Linux
kernel. Below the dashed line of the Figure, there
are 2 components of the switch: ovs-vswitchd is
the user-space program responsible for handling
packets based on rules (so called flow tables)
which are inserted by a controller (upper part
of the Figure).
The latter component is the Kernel Datapath which
receives the packets from the OS NICs. The first
time a packet is received it is redirected to ovs-
vswitchd which has a set of actions and decides
whether the packet shall be modified, dropped,
routed etc. The Kernel Datapath serves as a cache for the decisions of the ovs-vswitchd.
Since open vSwitch is a multi-layer switch, the packet classification allows a controller to
match against any protocol field. Each rule has also a priority which is necessary if multiple
rules match.
Durable settings of the switch such as adding or removing ports of the switch, configuring
QoS queues or enabling the STP protocol are stored in the ovsdb-server (left part of the
Figure) and can be configured by a OpenFlow controller via the OVSDB protocol.

1https://www.open-mesh.org/projects/open-mesh/wiki/Emulation
2http://www.open-mesh.org/attachments/download/152/vde2-2.3.2_colour.patch

23

https://www.open-mesh.org/projects/open-mesh/wiki/Emulation
http://www.open-mesh.org/attachments/download/152/vde2-2.3.2_colour.patch


3 Related Work

Pfaff et al. demonstrate that open vSwitch is very fast. In a comparison against the Linux
bridge, it achieves identical throughput in the simplest configuration of open vSwitch while
having more CPU overhead (161% vs 48%) with a throughput of 18.8 Gbps. Adding a flow
to open vSwitch and a corresponding iptables rule to the bridge shows that the CPU usage
of the bridge increases to 1,279% while the CPU usage of open vSwitch remained constant
[34].
Conclusion: The open vSwitch may be a good alternative to the Linux bridge, especially
when much flexibility on the packet classification is needed. There needs to be done further
research if link emulation can be achieved with the switch.
Moreover, a comparison between the wireless mode of MiniWorld and open vSwitch is
needed in terms of packet classification. The wireless mode in MiniWorld uses ebtables to
control which nodes can see each other. A controller in open vSwitch can probably replace
ebtables.

3.3 WiFi Virtualization

USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 119
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Figure 1: The components and interfaces of Open vSwitch. The
first packet of a flow results in a miss, and the kernel module
directs the packet to the userspace component, which caches the
forwarding decision for subsequent packets into the kernel.

datapath kernel module, is usually written specially for
the host operating system for performance.

Figure 1 depicts how the two main OVS components
work together to forward packets. The datapath module
in the kernel receives the packets first, from a physical
NIC or a VM’s virtual NIC. Either ovs-vswitchd has
instructed the datapath how to handle packets of this type,
or it has not. In the former case, the datapath module
simply follows the instructions, called actions, given by
ovs-vswitchd, which list physical ports or tunnels on
which to transmit the packet. Actions may also specify
packet modifications, packet sampling, or instructions to
drop the packet. In the other case, where the datapath
has not been told what to do with the packet, it delivers
it to ovs-vswitchd. In userspace, ovs-vswitchd deter-
mines how the packet should be handled, then it passes
the packet back to the datapath with the desired handling.
Usually, ovs-vswitchd also tells the datapath to cache
the actions, for handling similar future packets.

In Open vSwitch, flow caching has greatly evolved
over time; the initial datapath was a microflow cache,
essentially caching per transport connection forwarding
decisions. In later versions, the datapath has two layers of
caching: a microflow cache and a secondary layer, called
a megaflow cache, which caches forwarding decisions for
traffic aggregates beyond individual connections. We will
return to the topic of caching in more detail in Section 4.

Open vSwitch is commonly used as an SDN switch,
and the main way to control forwarding is OpenFlow [27].
Through a simple binary protocol, OpenFlow allows a
controller to add, remove, update, monitor, and obtain
statistics on flow tables and their flows, as well as to
divert selected packets to the controller and to inject pack-
ets from the controller into the switch. In Open vSwitch,
ovs-vswitchd receives OpenFlow flow tables from an
SDN controller, matches any packets received from the
datapath module against these OpenFlow tables, gathers
the actions applied, and finally caches the result in the

kernel datapath. This allows the datapath module to re-
main unaware of the particulars of the OpenFlow wire
protocol, further simplifying it. From the OpenFlow con-
troller’s point of view, the caching and separation into
user and kernel components are invisible implementation
details: in the controller’s view, each packet visits a series
of OpenFlow flow tables and the switch finds the highest-
priority flow whose conditions are satisfied by the packet,
and executes its OpenFlow actions.

The flow programming model of Open vSwitch largely
determines the use cases it can support and to this end,
Open vSwitch has many extensions to standard OpenFlow
to accommodate network virtualization. We will discuss
these extensions shortly, but before that, we turn our focus
on the performance critical aspects of this design: packet
classification and the kernel-userspace interface.

3.2 Packet Classification

Algorithmic packet classification is expensive on general
purpose processors, and packet classification in the con-
text of OpenFlow is especially costly because of the gen-
erality of the form of the match, which may test any com-
bination of Ethernet addresses, IPv4 and IPv6 addresses,
TCP and UDP ports, and many other fields, including
packet metadata such as the switch ingress port.

Open vSwitch uses a tuple space search classifier [34]
for all of its packet classification, both kernel and
userspace. To understand how tuple space search works,
assume that all the flows in an Open vSwitch flow ta-
ble matched on the same fields in the same way, e.g., all
flows match the source and destination Ethernet address
but no other fields. A tuple search classifier implements
such a flow table as a single hash table. If the controller
then adds new flows with a different form of match, the
classifier creates a second hash table that hashes on the
fields matched in those flows. (The tuple of a hash table
in a tuple space search classifier is, properly, the set of
fields that form that hash table’s key, but we often refer
to the hash table itself as the tuple, as a kind of useful
shorthand.) With two hash tables, a search must look in
both hash tables. If there are no matches, the flow table
doesn’t contain a match; if there is a match in one hash
table, that flow is the result; if there is a match in both,
then the result is the flow with the higher priority. As the
controller continues to add more flows with new forms of
match, the classifier similarly expands to include a hash
table for each unique match, and a search of the classifier
must look in every hash table.

While the lookup complexity of tuple space search is
far from the state of the art [8, 18, 38], it performs well
with the flow tables we see in practice and has three attrac-
tive properties over decision tree classification algorithms.
First, it supports efficient constant-time updates (an up-

Figure 3.2: Open vSwitch Architecture [34]

All related work except Mininet-WiFi
lack the simulation of a real WiFi card
inside the virtualization layer. Xia et al.
[48] point out that there are currently 2
approaches used for WiFi virtualization
which are illustrated in Figure 3.3.

The left side shows the software-
based, the second the hardware-based
approach. In the software-based ap-
proach there is only one wireless net-
work card. The hypervisor takes care of
providing each VM access to the WiFi
card but emulates an 802.3 ethernet de-
vice inside the guest. Either the standard NIC drivers are used inside the guest or paravirtu-
alized drivers are provided for performance reasons. Therefore, the VMs have no access to
the actual wireless NIC.
In the second approach the virtualization is handled by the wireless NIC itself. Single Root
I/O Virtualization (SR-IOV) is a specification allowing PCIe devices to expose multiple
Virtual Interface (VIF) which can be directly assigned to a VM.
Xia et al. propose a combined approach called virtual WiFi. They argue that a para-
virtualization approach where the hypervisor vendors provide the para-virtual driver
is not feasible because the management interface between the driver and the wireless NICs
is often proprietary. Therefore, hypervisor vendors could only provide the smallest common
denominator.
The argumentation is true for a real wifi card whose functionality shall be exposed to
multiple VMs, but does not hold for a virtual radio on the host which could be exposed via
para-virtual drivers to the guests.
MiniWorld already has a 802.11 backend built-in, but this requires a user-space application

to be run inside the guest. An approach which does not require VM image modification is
to move the functionality to a Qemu device driver. Xia et al. also implement a device driver
for Qemu, therefore the summary of their virtual WiFi is very interesting for the future
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generally emerges: the higher the data rate, the higher the prob-
ability of receiving errors. Rate adaptation is the process of dy-
namically switching data rates to match the channel conditions
with the goal of selecting the rate that will give the optimum
throughput under the present channel conditions.

• Power management: Mobile devices with WLAN radio usually
have a limited energy budget constrained by battery life. On the
other hand, the shared channel access nature of IEEE 802.11
forces wireless STAs to continuously listen to the channel to
determine its current status. As a result, a mobile device using
WLAN radio would drain its battery very quickly. IEEE 802.11
standard provides power save modes to reduce the time required
for a station to listen to the channel. The device driver can
control how long and how often the radio needs to be on.

• Power control: Transmit power of WLAN devices affects many
aspects of the underlying wireless network. It determines the
range of a transmission, the quality of the signal received at
the receiver as well as the magnitude of interference it causes
to other receivers. The typical goal of power control is to set
the transmit power of a WLAN device to the lowest possible
level that is still compatible with the quality of the desired
communication.

The above brief introduction of Wireless LAN provides a
glimpse into the complexity of the Wireless LAN device, espe-
cially on the complexity of WLAN management functions. Com-
pared with wired LAN devices that involve mainly data centric
operations, their differences primarily lie in the following aspects:

1. There is a range of complex management functions that affect
the fundamental functionalities of wireless LAN devices. The
device driver is generally involved in many of those manage-
ment decisions for the WLAN device to have acceptable per-
formance. On the contrary, wired LAN devices are data centric
and have very little management functions.

2. Wireless STA is not constrained by the physical location or
the number of available network plugs. Inherently, multiple
wireless links can be setup from one mobile device without
the Access Point knowing that multiple wireless links originate
from the same device.

3. Wireless LAN throughput is not bounded by the platform’s
I/O bandwidth. Rather, it is bounded by the wireless channel
capacity. Additionally, due to the distributed channel access and
dynamic nature of the wireless link, the channel utilization ratio
is typically less than 50%. The achievable throughput to date is
generally less than 20 Mbps for 802.11a/g (peak channel rate
is 54 Mbps) and less than 200 Mbps for 802.11n (peak channel
rate is 450 Mbps) [15].

3. Wireless LAN Virtualization

3.1 Limitations of current virtualization approaches

Today’s network interface virtualization techniques can be catego-
rized as either software or hardware based approaches. The soft-
ware based approach is shown in Figure 2(a), where the VMM
implements the virtualization functions in software [10, 35] to
support virtual network interfaces for multiple guest VMs. The
VMM establishes the actual network connection using the plat-
form’s physical NIC and then bridges the connection to multiple
virtual machines. In many implementations, the selected virtual
network card is a legacy ethernet card for simplicity, and the guest
OS inside the VM uses the standard off-the-shelf ethernet device
driver. In some other implementations, the para-virtualized driver
will be used in the guest OS for function/performance enhance-
ments.

The second approach focuses on providing hardware virtualiza-
tion support on the NIC device itself. In particular, Single Root
I/O Virtualization (SR-IOV) [29] provides a standard mechanism
for devices to advertise their ability to be simultaneously shared
among multiple virtual machines, and it allows for the partition-
ing of a PCI function into a set of virtual interfaces. As shown in
Figure 2b, a SR-IOV enabled NIC device presents multiple virtual
interfaces (VIF) and the VMM can directly assign a VIF to a spe-
cific virtual machine, hence drastically reducing the performance
penalty of high-bandwidth network cards such as 10Gbit Ethernet.

Device Model Device Model

Bridging Function 
Module

VMM

VM2VM1

Wireless 
NIC driver

Wireless NIC 

Guest 
driver

Guest 
driver

(a) Software-based approach (b) Hardware-based approach

Figure 2. Existing network interface virtualization approaches

Existing approaches are primarily developed for wired network
interface, and are not suitable for virtualizing wireless network in-
terface due to the fundamental differences between wireless LAN
and wired LAN devices we elaborated in Section 2. More specifi-
cally, the limitations of the 802.3-based emulation approach come
from its difficulty to support Wireless LAN management functions
inside the VM. IEEE 802.11 is required to appear to higher layers
(logical link control (LLC)) as a wired IEEE 802 LAN. This re-
quires IEEE 802.11 to incorporate functionality that is untraditional
for MAC sublayers, in order to meet reliability assumptions and to
handle QoS traffic in a manner comparable to wired LANs. In other
words, IEEE 802.11 MAC functions is a super set of 802.3 MAC
functions, and many management functions will get lost when em-
ulating IEEE 802.11 device as 802.3 device.
Using a para-virtualization approach and have the VMM vendor

supply the para-virtualized driver is technically possible. However,
given the WLAN management functions are complex and the man-
agement interface between host driver and wireless LAN device is
often proprietary, the reality is that VMM vendor would only pro-
vide the smallest common denominator of many wireless network
cards. Any vendor specific feature or software component that pro-
vided additional benefits would not be possible inside the guest.
Hardware based virtualization approach provides virtualization

support at NIC device, where the limitations mainly lie in the
cost and complexity – validation and consolidation of management
commands from multiple VMs have to be implemented on the de-
vice. Due to the wide range of management functions a WLAN de-
vice has to support, hardware based virtualization mechanism such
as SR-IOV would significantly increase the complexity and cost of
wireless NIC. As we mentioned before, wireless LAN throughput
is not bounded by I/O bandwidth, given the best achievable wireless
LAN throughput is less than 200 Mbps to date. As such, hardware
based virtualization mechanisms do not add any additional value in
boosting the data I/O bandwidth.

Figure 3.3: WiFi Virtualization Approaches [48]

development of MiniWorld.

3.3.1 Combined Software And Hardware Based Approach

Their prototype implementation is based on KVM and relies on an Intel’s 5000 or 6000 WiFi
card. Figure 3.4 illustrates the architecture of their approach which uses a combination of
software- and hardware-based virtualization.

Figure 4. Virtual WiFi Prototype implementation based on KVM

from guest WiFi driver are intercepted by KVM and delivered to
the virtual WiFi device model, which then hands these requests to
the augmented host WiFi driver.
During initialization virtual WiFi device model establishes an

ioctl interface to the augmented host driver, and uses this inter-
face to allocate a new VM state inside the driver. For all com-
mands/packets sent by guest WiFi driver, the device model tags
them with host driver allocated VM-ID and deliver them to the
augmented host driver via the ioctl interface. For received packet
or incoming interrupt from physical WiFi NIC, the augmented host
driver signals the device model about the availability of a packet
or an interrupt. The device model retrieves the received pack-
ets/interrupts via an ioctl call. If the received packet is valid, device
model enqueues it in the guest WiFi driver queue and injects an
interrupt into the guest OS for further processing.

4.2 Virtualization Augmented Host Driver

The virtualization extension is added to the default “Intel Wireless
WiFi” driver in Linux kernel release 2.6.33 [4] that works for both
Intel’s 5000 and 6000 series WiFi cards. The extension implements
an IOCTL interface to interact with device model inside QEMU.
On the transmission path, when the augmented driver receives a
command from the device model, it either virtualizes the command
locally, or validates the command and inserts it into the physical
WiFi driver transmission queue (data or control queue). On the
receiving path, when receiving a packet from wireless device, it
examines the VM-ID associated with the packet to identify the
intended receiver. It then signals the corresponding device model
which wakes up from a waiting poll to pick up the packet.

4.3 Virtualization Augmented WiFi NIC

The µCode handles time critical MAC operations. The virtualiza-
tion extension is added to WiFi µCode of both Intel’s 5000 and
6000 series WiFi cards. Both Intel’s 5000 and 6000 series WiFi
cards have Intel MyWiFi technology enabled, so the NIC hardware
is capable of handling at least two virtual MACs. Configuration,
connection status and state machine are maintained separately for
each virtual MAC. Control/data messages to/from each vMAC will
be tagged with different VM-ID so that they can be differentiated
by the augmented host driver.

µCode changes made in our prototype are as follows. When a
new virtual machine is initiated, a mapping table is created to map
VM-ID with the virtual MAC, and configure the hardware filtering
policy to allow packets targeted to this virtual MAC to be received.
On the receiving path, VM-ID is identified based on the received
packet’s MAC addresses and the packet is tagged with the VM-

ID before sending it to the host driver. On the TX path, command
response is generated after completing the command execution.
The command response is also tagged with VM-ID before sending
it to the host driver. The security keys are maintained in a unified
security table, which is indexed by the combination of connecting
access point and the virtual MAC address.

4.4 Address Translation

Typical device models copy TX packets from the VM’s memory
and send them to host networking stack for transmission. However,
since virtual WiFi device model has a direct interface to host driver,
it can avoid the extra copy for transmission packets. Once virtual
WiFi device model receives a TX command from the VM that con-
tains the guest physical address (GPA) of the packet buffer, the de-
vice model requests VMM to convert the GPA to host physical ad-
dress (HPA) instead of copying the packet from the VM’s memory.
After the GPA in the TX command being replaced with the HPA,
the TX command is sent to the wireless NIC by the host driver
for actual transmission. The wireless NIC performs the DMA op-
eration using the HPA, copying the packet directly from the VM’s
memory to avoid extra memory copy.
It was observed that address translation by the VMM in soft-

ware causes significant CPU overhead. Thus one optimization is
to exploit the address remapping hardware support present in the
platform, such as Intel VT-d [6] or AMD IOMMU [8]. We imple-
mented both software-based and hardware-assisted address trans-
lation in our virtual WiFi prototype for performance analysis. The
hardware-assisted address translation is based on Intel VT-d in our
implementation. VT-d hardware is typically used to support assign-
ment of a single device to only one address domain (and hence only
one VM). That is, only one VT-d context entry can be assigned for
each PCI device. The GPAs used by a device in DMA requests
are mapped to HPAs through the VT-d remapping table pointed by
the device’s VT-d context entry. On the other hand, in our virtual
WiFi system, one physical wireless NIC has to be shared by multi-
ple VMs, which will require one remapping table for each VM that
shares the physical device. Virtual WiFi implements an approach
that enables VT-d to support multiple address domains within a
single VT-d context entry, by merging multiple VT-d tables into a
single VT-d table.
The approach we implemented is based on the fact that current

VT-d table has much larger physical address space than the physical
memory available to each VM. Therefore a number of high order
bits in GPAs will remain un-programmed in typical usages. We can
partition the VT-d table into multiple chunks in a way that each
chunk contains mappings for one VM. For example, if the VT-d
hardware supports mapping up to 512 GB memory address space
(39 bits long, 3-level page table), we can divide the address space
into 16 chunks with each chunk supporting up to 32GB address
space. In this way, VMM creates a merged VT-d table where each
chunk represents the unique remapping sub-table for each VM.
During a VM’s initialization, the virtual WiFi device model

requests the VMM to add the VM’s VT-d table into the merged
VT-d table used by the device. The VMM selects the chunk location
corresponding to the VM-ID and copies the top-level entries from
the VM’s table into the merged table. Using the same example as
above, 32 top-level entries will be copied from the VM table to the
merged VT-d table at chunk location 1 if the VM-ID is 1. When the
virtual WiFi device model receives commands from guest driver,
the device model integrates the VM-ID into the higher order bits
(bits 35–38 in this example) of the GPA present in the command.
When the command is sent to the wireless NIC, the device uses
the VM-ID tagged GPA for DMA request, which will lead to GPA
being translated to HPA using the correct chunk corresponding to
the VM in the merged VT-d table.

Figure 3.4: Virtual WiFi Architecture [48]

The bottom of the Figure shows the actual WiFi
device whose microcode needs some modifica-
tions. In the host lives an augmented WiFi driver.
On the top part of the Figure the VM to which
the WiFi card shall be exposed is shown.
KVM can intercept requests from I/O ports. If
the VM wants to access these ports, a VM exit
instruction lets the processor switch control from
the VM to the host. The I/O requests are then
forwarded to Qemu used by KVM for the provi-
sioning of virtual devices.
They developed a Virtual Wifi Device Model for
Qemu which establishes an ioctl interface to the
Augmented Wifi Driver during initialization to get a VM-ID. This is used to tag packets
as well as commands from the VM so that the Augmented Wifi Driver can demultiplex
commands/packets from the VMs. The Augmented Wifi Driver is a modification of the Intel
driver to support the ioctl interface. The WiFi Devices microcode has to be aware of the VMs.
Therefore a mapping between MAC addresses and the VM ids are allocated. The Augmented
Wifi Driver thus knows about the VM id both for packet transmission as well as for packet
reception [48].
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3.3.2 Qemu Atheros NIC Model

Another paper from Keil et al. [24] shows the creation of a virtual 802.11 device for Qemu.
Unfortunately the code is only available for Qemu version 0.9.1 and has never been merged
into the Qemu code base. Keil et al. devloped a wireless fuzz-test suite. They argue that
device drivers are a security critical component in OSs.
Their virtual network device is based on the rtl8139 and ne2000 NICs which simulates
an Atheros AR5212 802.11 a/b/g chipset. The driver they used is MadWiFi together with
Ubuntu 6.06.
Keil et al. point out that they reverse-engineered the AR5212 chipset to create the virtual
device model for Qemu. The device model interacts with the WiFi NIC through shared
memory [24].

3.3.3 Mac80211 Hwsim & Wmediumd

There is a very interesting module called mac80211 hwsim which is shipped with a standard
Linux kernel. It is able of simulating arbitrary numbers of 802.11 radios.
MiniWorld leverages this kernel module to implement a 802.11 network backend. Therefore,
the functionality of a device driver as well as the integration into the Linux wireless
stack is shown in the following. Afterwards the 802.11 simulator is explained in more
depth as well as wdmediumd which simulates the wireless medium for mac80211 hwsim.

mac80211_hwsim

wmediumd

kernel-space

user-space
nl80211

wifi 1 wifi nwifi 2 wifi channel

kernel module

Figure 3.5: Wmediumd architecture

Further research showed that Mini-
World is not the only full system based
virtualization approach which makes
use of wmediumd. A custom build solu-
tion has been used to propose a Con-
sensus Transmit Power Control (CTPC)
algorithm for Wireless Mesh Networks
[49].

The kernel module called mac80211 hwsim
has been created 2008 and is intended
to ease the development of Linux
network tools such as hostapd and
wpa supplicant3.
It works by distributing all frames from WiFi devices which are on the same channel among
them.
mac80211 views mac80211 hwsim just as another hardware driver like ath9k is in Figure 2.9.
The kernel module has a parameter which defines the number of radios which shall be
emulated. Moreover, a device in monitor mode is created [29] which enables to view the
unaltered 802.11 frames plus information about the wireless system such as signal to noise
ratio, and the modulation scheme. These extra information are encapsulated in the radiotap
header [44, 26].
Therefore the wireless simulator uses the Linux 802.11 wireless stack as well as the re-
maining network stack. This enables experiments with the simulator to use a real 802.11
implementation. Note that the WiFi simulator does not simulate the wireless channel.

3The first is a daemon running in user-space which enables the creation of 802.11 access points. The latter is
an authenticator for WPA/WPA2/802.1X etc.

26



3.4 Emulation Systems

Wmediumd4 adds these capabilities to the simulator. Figure 3.5 shows the architecture of
the C software which runs in user-space (bottom of the Figure). There is a netlink API
inside the simulator which allows to capture the 802.11 frames. wmediumd uses this API and
adds packet loss and delays with random backoff based on a configuration which defines
statically the signal strength between peers. The frames are sent back to the kernel via the
same interface.

3.4 Emulation Systems

The first network emulation systems which is discussed verbosely is the Common Open
Research Emulator (CORE) since the Bridged LAN and Bridged WiFi network backend
rely on approaches which CORE introduced (Section 3.4.1).
A paper from To et al. [42] discusses the integration of the network simulator ns-3 into
a network emulation system with Linux bridges (Section 3.4.3). The approach could be
implemented by MiniWorld too, to provide a network backend with high fidelity simulation.
To the best knowledge of the author, Mininet-WiFi is the only network emulation system
which provides a real WiFi NIC to its virtual nodes. The system is presented in Section 3.4.5
to the reader.

3.4.1 CORE

The Common Open Research Emulator (CORE) is a fork of the Integrated Multiprotocol
Network Emulator/Simulator (IMUNES) developed by the Boeing research and technology
devision [8] and further supported by the Naval Research Laboratory.
It is open source and written in python. MiniWorld is heavily inspired by CORE. One very
important point in which MiniWorld differs is that it uses full system emulation whereas
CORE uses container virtualization technology.
Note that CORE comes with a graphical User Interface (UI) which allows to define network
topologies. They can be exported to XML files and used to switch between topologies in the
CORE Mobility Pattern of MiniWorld. In the following, the architecture of the emulator is
illustrated.

Architecture

CORE uses containers to isolate nodes from each other. It supports FreeBSD as well as
Linux.
All nodes share the same kernel since container virtualization is used. Therefore protocol
stacks other than the ones which are present in the kernel of the host machine, can not be
emulated. Further limitations are that router images, different OSs and different kernels are
not usable with CORE as well. The decision to support only ABI matching applications is a
tradeoff between performance and flexibility. MiniWorld in contrast, supports every OS
and application which runs under Qemu.
CORE uses OpenVZ and Linux namespaces to achieve container-based process isolation
under Linux.
For FreeBSD it uses jails. Since the network emulation and distributed emulation differs for
each supported OS, they are outlined separately from each other in the following.

4https://github.com/bcopeland/wmediumd
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FreeBSD

The first version of CORE supported only FreeBSD. CORE leverages the BSD Netgraph
system to create a certain network topology. Ahrenholz et al. [1] showed that the Netgraph
system uses the available processor cores much better and is able to achieve a much bet-
ter throughput in terms of packets per second compared to the Linux network backend.
Netgraph was able to deliver more than 2 times more packets per second due to zero-copy
semantics achieved by passing packets by reference only. Therefore, time-consuming mem-
ory copies are prevented [1].
The network topology creation of wired nodes can be easily achieved with the Netgraph
system. To mimic the wireless channel, they utilize the Netgraph hub node, which simply
forwards all packets to any connected node except the originator. Ahrenholz et al. added a
hash table to the hub node which controls, based on source and destination node id, the
link quality between peers.
Link effects are applied by letting the nodes connect via a pipe to the Netgraph system. The
effects can then be applied to the pipe on a per packet basis depending on the source and
destination.
For more complex link effects, CORE uses a modular C daemon which receives node infor-
mation from the GUI and calculates link effects such as bandwidth, delay, loss, duplicates
and jitter. Afterwards the wlan kernel module is configured via the libnetgraph C API.
Ahrenholz et al. mention a simple wireless model where the delay and loss increases when
the distance between nodes increases as well.
Hence, the link effects are controlled by the distance between nodes like in MiniWorld.
A simulation can also be distributed among several emulation servers. A daemon written
in C (Span), creates TCP/IP tunnels for the nodes. The sockets are Netgraph nodes too,
therefore they can be connected to a CORE node.
For wireless scenarios, Netgraph kernel sockets (ksockets) enable connecting to another
machines kernel and appear also as a Netgraph node.
For packets sent to a ksocket, the hash table lookup is only done at the receiving side. To
perform the demultiplexing, packets are prepended with the source id [2].

Linux

There are three different ways to setup the virtual networks for the Linux platform. The first
uses Linux bridges and netem. The second leverages Extendable Mobile Ad-hoc Network
Emulator (EMANE) and the last integrates with the real-time scheduler of ns-3 [1]. Each
possibility of network emulation is depicted in the following:

• Linux Bridges + netem: Linux bridges mimic a hub/switch in the form of a NIC in
the OS. Netem is a kernel module which is able to apply basic link effects (bandwidth,
delay, loss, etc.) based on filters.
Both OpenVZ and Linux namespace containers use the veth driver which provides a
pair of NICs. One resides in the container, the other lives on the host and is bridged
together with nodes which share connectivity. Note that this needs one bridge per
connection.
For wireless connections, CORE uses ebtables to configure which node can reach any
other node. Ebtables is the layer 2 equivalent of iptables. Rules are based on the MAC
layer [1].
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Fig. 2. Example packet flow through CORE and EMANE

a set of widgets for visualizing the network. An adjacency
widget displays OSPF router adjacencies, while a throughput
widget displays the real-time bandwidth (kbps) for links.
Observer widgets allow the user to mouse over a node to view
information like running processes, routing tables, firewall
rules, and more. There is a run tool for easily running a
command on a selection of nodes and a traceroute tool for
viewing network paths. Finally, the user is able to drag nodes
around the canvas to generate EMANE events that affect the
connectivity.

Combining CORE and EMANE also brings lightweight vir-
tualization to the EMANE world. While EMANE can provide
multiple NEMs on one machine, CORE can offer multiple
network stacks that the NEMs can be connected to, and a
process space for isolating user processes. Wireless MANET
networks can be expanded to include virtual nodes that are
wired into the topology. Real nodes (with virtual interfaces)
can be intermingled with virtual nodes, and the network can
be connected to other wired networking equipment.

CORE networks do not need to be created from a GUI or
have a GUI attached while running. The CORE framework
includes Python modules that can be imported by Python
scripts for an advanced scripting environment. Additionally,
the EMANE event service has Python bindings, so the same
Python scripts can publish or subscribe to EMANE events.

IV. INTEGRATION AND ITS CHALLENGES

Integrating CORE and EMANE creates a co-emulation
environment where interaction needs to be managed and
coordinated. Areas that can overlap and require attention to
avoid conflicts include configuration and startup dependencies,
maintaining consistent state information, and clock synchro-
nization.

At a high level, an integrated CORE/EMANE emulation
consists of:

Fig. 3. Screenshot of an auto-generated RF-PIPE configuration dialog

• Network topology and node configuration managed by
CORE.

• Emulated nodes with independent network stacks man-
aged by CORE.

• Network interfaces controlled by EMANE.
• Network emulation controlled by EMANE.
An example packet flow between a sender and receiver in

this environment is illustrated in Figure 2.
Certain challenges were experienced when integrating

CORE and EMANE to work together; they are described here.
Location information, for example, exists in both domains.

The location of the node on the CORE canvas and the
geographic (latitude, longitude, altitude) location given by the
last location event for a NEM need to be synchronized. The
question must be answered: who controls the node position?
Through the use of the EMANE event service library Python
binding, CORE was given the ability to subscribe to EMANE
events or to publish them. The user must choose to move
nodes via a mobility script (scripted events update the node
position on the canvas) or from the CORE canvas (CORE
publishes location events) when nodes are dragged about using
the mouse. The CORE canvas initially had only a Cartesian
(x, y) coordinate system, so a geographic reference point
and pixels-to-meters scale needed to be added in order to
convert to latitude and longitude. As the CORE canvas is two-
dimensional, altitude is not supported, so it is discarded when
received and set to a fixed value when generating a location
event.

EMANE is a modular framework, and different models
having different configuration parameters may be available
on a system. Another challenge is how to present the con-
figuration options for these models to the user in a modular
fashion. When a new model is developed, we do not want
to have to make changes to the GUI (i.e. program a new
dialog box) to support that model. This problem was solved
using configuration messaging such that the GUI can query the
backend for available models and possible configuration values

1872

Figure 3.6: CORE EMANE Integration [3]

• EMANE: The network emulator provides high fidelity link emulation with pluggable
PHY and MAC layers. EMANE could also be integrated into MiniWorld, therefore
only its integration is illustrated in Figure 3.6. The top part of the Figure shows 2
CORE nodes living in a network namespace. The bottom part shows that EMANE can
emulate the PHY and MAC layers. Packets are delivered by the over-the-air (OTA)
Manager with the help of multicast. In the middle of the Figure one can see eth0
and TAP socket which tie CORE and EMANE together. A tap device has 2 parts, one
in user-space, the other in kernel-space. The user-space part is the TAP socket and
controlled by EMANE. Packets sent by the CORE node are read from the tap device
socket and delivered by the OTA manager. Moving nodes in the UI generates EMANE
location events [3].
• Ns-3: The discrete-event network simulator provides high fidelity network models

such as 802.11, WiMAX, LTE etc. Furthermore, it features several mobility models. Be-
cause ns-3 runs in simulation-time and not in wall clock time, the real-time scheduler
of ns-3 has to be used.
The integration also uses a tap device. There is not yet support for ns-3 in the GUI.
Hence, ns-3 has to be scripted with the help of the ns-3 python API [10].

Distributed Mode The distributed mode in Linux uses Generic Routing Encapsulation
(GRE) tunnels5 to connect nodes living on different emulation servers. Although there is no
auto-distribution. The consequence is that nodes have to be manually assigned to a specific
emulation server. This is different in MiniWorld where a scheduler carries out the node
assignment task according to resources of the emulation servers.

5Gretap to be precise
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Summary & Comparison

CORE has been illustrated very detailed because MiniWorld is very familiar with CORE.
MiniWorld includes the bridge + netem backend and supports both the wired as well
as the wireless connection mode (MiniWorld’s Bridged WiFi and Bridged LAN network
backend). Moreover, MiniWorld also uses GRE to enable node communication among
emulation servers. The EMANE and ns-3 integration is very interesting and could be ported
to MiniWorld. The benefits for MiniWorld are more precise PHY and MAC layer as well as
more mobility patterns. Furthermore, MiniWorld utilizes the scenario editor of CORE and
provides the possibility to change scenarios in predefined time steps (MiniWorld’s CORE
Mobility Pattern).
To sum up, CORE supports FreeBSD (jails) and Linux (OpenVZ, Linux namespaces). Either
static topologies can be used or nodes can be moved dynamically by a ns-2 mobility script.
Both wired and wireless connection modes are supported. Wireless communication is
emulated with the help of netem, ns-3 or EMANE. The fidelity of models range from a basic
on-off model to very precise emulation of PHY and MAC layers.
The papers from Ahrenholz et al. ([2, 1, 3]) lack a study of scalability, especially for the
distributed mode. They claim that CORE supports a few hundred nodes. The lightweight
virtual machines scale very well, but if CORE also does, is not proven.

3.4.2 IMUNES

CORE started as a fork of IMUNES in detail. The authors of IMUNES added network stacks
virtualization to BSD. They created a new kernel structure called vnet and placed static
and global variables there so that a network stack could be created multiple times without
affecting each other.
Moreover, they enabled virtual nodes to communicate with each other without inducing
additional performance overheads by leveraging the unique BSD Netgraph system which
passes packets by reference.
The paper [50] mentations the BSD link emulators ng pipe and dummynet for network
emulation. In contrast to CORE, IMUNES only supports the BSD Operating System.

3.4.3 Dockemu

connect two or more interfaces together. Moreover, these
interfaces can either be real interfaces inside the OS (Ex. eth0)
or can be virtual interfaces (Ex. tap).

Typing the following command in a Linux OS using a Shell
or Command Line Interface (CLI) shows the current active
bridges in the system and which interfaces are connected to
them:

root@ubuntu:˜# brctl show

In this first example, the bridge lxbr0 has associated the
interface eth0 only.

bridge name bridge id interfaces
lxcbr0 8000.000c297bbed4 eth0

The output for the second example, the bridge lxbr0 has
associated two interfaces eth0 and veth032. This means that
a real interface like eth0 can communicate with a virtual
interface veth032 through a virtual bridge lxcbr0.

bridge name bridge id interfaces
lxcbr0 8000.000c297bbed4 eth0

veth032

E. Network Simulator 3

The Network Simulator 3 or NS-3 “...is a discrete-event
network simulator, targeted primarily for research and edu-
cational use. ns-3 is free software, licensed under the GNU
GPLv2 license, and is publicly available for research, devel-
opment, and use” [14].

NS-3 has many advantages compared to other simulators,
being one of them the use of C++ for development of
experiments which makes a perfect companion with another
OpenSource projects. For example, NS-2 (which is still widely
used), has the drawback of having a complex environment to
develop new experiments, due to the fact that uses a mix of
OTcl with C++.

The role of NS-3 in Dockemu is to provide the means for
network scenario generation, which is also the final piece of
the Dockemu framework. The Tap Bridge Model allows the
interface of a node inside NS-3 to be mapped directly into a
Tap device (also called interface) in the Host OS.

Fig. 4. Tap Bridge Architecture - Simplified Model

Figure 4 shows the flow of information from/to a Virtual
Machine (in this case a Linux Container) to/from a node inside
the NS-3 simulator.

F. Dockemu Architecture

The Dockemu tool merges the technologies that we
mentioned before into a software capable of satisfying
the requirements presented at the beginning of this paper.
Dockemu has the ability of creating scenarios and then
emulating them depending on the need of the experiment.
From wired to wireless networks, wireless ad hoc networks
and MANETs, which can be further tested by the advantages
of using real OSs. For example, most MANET routing
protocols are implemented for simulators (NS-2, NS-3,
OMNET++, etc.) but most fail to provide an implementation
that can handle IPv6. Moreover, there are only a few wireless
ad hoc routing protocol implementations in real OSs that are
constantly maintained by their authors.

As showed in Figure 5, the Dockemu tool will deploy the
corresponding Linux Containers, Linux Bridges, Tap Bridges,
Virtual Interfaces (veth) and the needed NS-3 script, in order
for the experiment to work properly. Once the experiment is
deployed, the user can “attach” to any container and perform
metric tests with common and familiar tools, like tcp-dump,
ping, ping6, Iperf, etc. If needed, the user can create its
customized Container Template, which can later be replicated
to the number of nodes needed. As we can see, Dockemu is
very powerful because of its flexibility and endless options
that can be added directly to the containers.

Fig. 5. Dockemu Framework - Top Level View

IV. IMPLEMENTATION

The Dockemu tool was implemented using the Python high-
level programming language and bash scripting. The tool is
invoked using the dockemu command in a CLI environment.
The Dockemu gets configured through a text file called dock-
emu.conf which provides all the variables needed to define
the scenarios. It is out of scope of this paper to name all of
the variables available for the Dockemu tool, were a tutorial
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Figure 3.7: Ns-3 Tap Bridge Model [42]

The authors of [42] argue that exist-
ing emulation solutions do not take
the time-consuming step of installation
and configuration into account when
it comes to the software a researcher
wants to evaluate. Therefore, they pro-
pose Docker containers as the virtualiza-
tion layer. Docker is a very new technol-
ogy which allows shipping applications
in a box. So called Docker Images are
self-contained and very popular in the
DevOps field, especially in cloud com-
puting.
Dockemu utilizes Linux bridges together
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with ns-3 to emulate PHY and MAC layers. Figure 3.7 shows how ns-3 integrates into
Dockemu. The top left part of the Figure shows the Docker container with a veth device
added to a Linux bridge. The right part of the Figure depicts the ns-3 network. A tap device
is added to the bridge on the OS endpoint. Inside ns-3 the tap socket is managed by the Tap
Bridge.
The architecture outlined in the Figure enables the integration of a network emulator within
ns-3. In place of the veth device, one can also use a second tap device. For MiniWorld e.g.,
the tap device created by Qemu could be added to the OS Bridge.
The tool is written in python and bash. It is CLI based and controlled by a config file. It
comes with OSLR and BMX6 as routing algorithms if one is needed. Other parameters such
as the emulated layer and a mobility pattern can be defined there [42].
Comparison: MiniWorld uses KVM instead of Docker containers as the virtualization layer,
but adding Docker to MiniWorld would increase performance for scenarios where full
system virtualization is not required. Moreover, routing is not built into MiniWorld. Instead
connectivity is provided on the link layer. Moreover, no simulation is used by MiniWorld’s
network backends.

3.4.4 Mininet

Mininet is an emulator for SDN and comes with open vSwitch. It6 uses Linux network names-
paces and process-isolation for each emulated node. There is one veth device pair for each
connection. One part of the veth pair is put into the namespace, the other is connected
to the openflow switch [45]. Controllers can run on the real network or inside the network
namespaces as long as they are reachable by means of TCP. There are a couple of network
topologies which can be created via the Command Line Interface (CLI). Mininet ships with
a VM which has useful tools, e.g. Wireshark and dpctl which can control and view the flow
tables of a OpenFlow switch. The CLI enables an easy control over the network namespaces.
Commands prefixed with a specific node id are executed in the appropriate namespace [33].

3.4.5 Mininet-WiFi

There is a fork of Mininet called Mininet-WiFi7. Fontes et al. use the mac80211 hwsim Linux
kernel module to simulate arbitrary numbers of 802.11 devices. Each virtual node still uses
a veth device pair for the communication between the host and the virtual nodes. On the
host a number of 802.11 radios is simulated with the help of mac80211 hwsim. Each wifi
device is then bridged to an OpenFlow capable AP switch. Their tool leverages hostapd
and wpa supplicant to create Stations (STAs) and APs. Furthermore, many mobility models
such as GaussMarkov, RandomDirection, RandomWalk, RandomWaypoint and Truncat-
edLevyWalk are supported [14].
The tool can be used via CLI, API or the Visual Network Description GUI which is capable
of generating Mininet-WiFi code.

6http://mininet.org. Last viewed on 02.11.2016
7https://github.com/intrig-unicamp/mininet-wifi
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3 Related Work

3.4.6 Netkit

Netkit uses a different virtualization approach than the related work seen before. It is a mix
between full-virtualization and container-based isolation. User-Mode Linux (UML) is a port
of the Linux kernel designed to run as a user-space application. A UML VM is comparable
to existing full-virtualization software in the fact that it supports the emulation of arbitrary
devices.

the scalability of Netkit by presenting a performance evalu-
ation. Section 7 compares Netkit with other state of the art
emulators. Conclusions are drawn in Section 8.

2. ARCHITECTURE AND SUPPORTED
NETWORKING TECHNOLOGIES

Netkit is a lightweight network emulator based on open
source software. It consists of several components: a kernel,
a filesystem image, virtual hub software, and a set of user
space commands. Netkit works out of the box: it includes
everything that is needed to run an emulated network on
a standard workstation and provides a set of ready to use
virtual labs that can be used to experiment with interesting
case studies. Netkit is conceived for easy installation and us-
age and does not require administrative privileges for either
one of these operations.

Netkit emulated devices are based on the User-Mode Linux
(UML) kernel [10, 36], a port of the standard Linux kernel
designed to run as a user space process on the real machine
(host). An instance of UML provides a virtual machine,
namely an environment having its own processes that per-
form I/O by interacting with the UML kernel instead of
the host kernel. Regardless of the hardware configuration of
the host, a virtual machine can be equipped with arbitrar-
ily chosen devices, including disks and network interfaces.
A virtual machine can then play the role of a specific de-
vice (e.g., a router) by running appropriate software (e.g.,
Quagga [35], XORP [8]).

Starting the UML kernel involves dealing with long and
complex command lines. For this reason, Netkit provides a
set of tools that allow users to easily configure and set up
complex network labs consisting of several virtual devices.
Section 3 describes these tools in detail.

Each virtual machine has its own filesystem which con-
tains a full-fledged GNU/Linux installation, based on the
Debian [29] distribution and suitably tuned to operate in-
side UML and to interface with Netkit’s commands. The
filesystem is stored inside a backing file on the host, whose
size is approximately 600MB. However, in Netkit it is pos-
sible to run a complex network scenario without having to
use one backing file for each virtual machine. In Netkit, each
virtual machine reads from the same backing file but writes
its changes to its own COW file following a Copy On Write
approach. The UML kernel takes care to show a consistent
view of the filesystem inside each virtual machine. The size
of a COW file is typically around 10MB. Therefore, a Netkit
installation takes about 600MB of disk space for the backing
file plus about 10MB for each started virtual machine. The
requirements in terms of main memory are also small: each
running virtual machine needs about 15MB of memory in
the default configuration.

Even if Netkit only supports experimentation with
GNU/Linux virtual machines, this environment o↵ers a very
wide spectrum of networking technologies.

Virtual machines can be interconnected by using virtual
hubs [14,37], namely software running on the host that em-
ulates ethernet collision domains. Optionally, a virtual hub
can be configured to access an external network, e.g., to con-
nect virtual machines to the Internet. Fig. 1 shows an exam-
ple in which virtual machines vm1 and vm2 are connected to
virtual hub A. Virtual machine vm2 has two virtual network
interfaces and is also connected to virtual hub B along with

Host kernel

UML kernel (VM1) UML kernel (VM2) UML kernel (VM3)

TAP interface

Virtual hub A Virtual hub B

Network
interface

Network
interface

Network
interface

Forwarding process

Network
interface

Network
interface

Figure 1: How Netkit virtual machines are net-
worked, possibly with a connection to an external
network.

Host console
vstart vm1 --eth0=tap,10.0.0.1,10.0.0.2
vstart vm2 --eth0=tap,10.0.0.1,10.0.0.3 --eth1=B
vstart vm3 --eth0=B

Figure 2: Netkit commands to implement the topol-
ogy in Fig. 1. The special name “tap” for collision
domain A indicates that the corresponding virtual
hub should be connected to the TAP interface.

vm3. By running appropriate software, vm2 can permit vm1

to communicate with vm3. In Netkit vm2 can be configured
to operate as a switch, as a router, as a firewall, as a Web
proxy, etc. In this setting, vm1 and vm2 can also reach an ex-
ternal network by means of virtual hub A that is connected
to the special TAP interface on the host. A network tap is a
device that provides a way to access the data flowing over a
network link. In Netkit, TAP is a device driver that makes it
possible to attach a virtual network interface to a userspace
process (in this case, the virtual hub). The host should take
care of routing packets between the TAP interface and the
real network interface. The Netkit commands in Fig. 2 auto-
matically set up the configuration of Fig. 1, including NAT
translation rules so as to allow any IP address to be used in
the emulated network. The addresses used by vm1 and vm2

to access the Internet are also automatically configured.
Although the physical layer in Netkit is limited to ethernet

emulation, a large number of other networking technologies
are supported as in a regular Linux machine. Among the
technologies supported by the UML kernel currently shipped
with Netkit there are 802.1d bridging and spanning tree,
802.1Q VLAN tagging, IPv4, IPv6, and MPLS based for-
warding, ARP, ICMP, UDP, TCP, IP filtering and mangling
(e.g., NAT), IPsec (transport and tunnel mode, ESP and
AH), GRE tunnels, load balancing by equal cost multipath,
and multicast with PIM-SM. These technologies can be con-
figured and managed using the traditional utilities available
under GNU/Linux. Kernel level support for other technolo-
gies can be obtained by expert users by building a custom
UML kernel. Netkit supports this activity by providing ev-
erything that is needed to re-build the shipped kernel from
scratch. Selection of the kernel for each virtual machine is
supported when multiple kernels are available.

A wide range of technologies are implemented by soft-
ware installed in the filesystem shipped with Netkit. Among
them there are DHCP, PPP, DNS server (bind), HTTP
and HTTPS (apache), Web proxy (squid), email (exim),
FTP, NFS, Samba, Telnet, SSH. Among the supported rout-
ing protocols there are RIP, OSPF, IS-IS, BGP (Quagga,
XORP), providing MIBs accessible via SNMP. Among the

Figure 3.8: Netkit Architecture [35]

Figure 3.8 depicts
the architecture of
Netkit. The upper
part of the Figure out-
lines the UML nodes.
They are intercon-
nected via the tap
module with a vir-
tual hub (middle of
the Figure). The vir-
tual hub can also be
connected to the Host
kernel, allowing to in-
tegrate remote applications and providing internet to the VMs.
Netkit comes with a default file system image for the VMs which is a Debian Linux. All
nodes share the same file system for reading, while they use a Copy On Write (COW)
mechanism to create a write-layer on a per-node basis. This reduces the amount of disk
space needed for the image [35].
To the best knowledge of the author, there is no scenario file format. Instead, topologies are
created via the Command Line Interface.
Comparison: Netkit is built for educational purposes and seems to lack many features such
as link emulation or a wireless mode at all.
MiniWorld also has a network backend that makes use of a software switch called VDE. The
switch uses also tap devices to interconnect the nodes but offers link emulation properties
such as bandwidth, delay etc. Moreover, MiniWorld utilizes the COW approach in the same
manner like Netkit does.

3.4.7 Cloonix-net

Cloonix-net is a modification of the Cloonix emulator8 whose changes have been integrated
into the Cloonix distribution. Cloonix-net is very similiar to Netkit, because it uses UML
as the virtualization layer. It adds the possibility to run multiple UML kernels and file
systems to Cloonix. Moreover, it leverages netem to provide basic link emulation features.
Rehunathan et al. present a detailed study of the Mobile IPv6 as well as the NEMOv6
protocol [37].

8http://www.clownix.net/
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3.4 Emulation Systems

3.4.8 GNS3

Li et al. summarize the open source GNS39 emulator capable of emulating Cisco routers.
The emulator was built to help people prepare for Cisco exams.
Cisco routers have a special OS called IOS. Graphical Network Simulator 3 (GNS3) includes
an own hypervisor called Dynamics which is also the main simulation engine. The virtual
machine monitor allows the simulation of multiple nodes on multiple servers by intercon-
necting the hypervisors via TCP/IP. GNS3 can only emulate Cisco routers, not switches
[27].
Besides CORE, it is the only simulator with a distributed mode.

3.4.9 NEMAN

NEMAN is a network emulator which is built for the special goal of testing middleware
and application layer protocols. Figure 3.9 outlines the architecture of the emulator. The
most important component in Network Emulator for Mobile Ad-Hoc Networks (NEMAN)
is the Topology Manager which is responsible for network switching and the creation of the
network topology. The Processes (lower part of the Figure) are the actual applications a
researcher wants to evaluate. They are connected with the Topology Manager by means of
tap devices. Therefore each application needs to be modified to bind to the tap device10.
Frames sent via the tap device are demultiplexed by the Topology Manager and switched
according to the topology information. There is a monitoring channel called tap0 in the
Figure, which is interconnected bidirectionally to all tap devices. This enables the use of
standard tools such as tcpdump for monitoring and analysis purposes. Moreover, due
to its bidirectionality, the monitoring channel allows to induce packets into the network.

 

Table I summarizes roughly the properties of these re-
lated works with respect to our particular requirements.  
As it can be seen from the table, none of them fulfills all 
the requirements. 

III. ARCHITECTURE 

NEMAN is designed to emulate a relatively large scale 
wireless network, up to hundreds of nodes, within a sin-
gle physical machine. With that respect, NEMAN is clos-
est to MobiNet.  The NEMAN architecture comprises the 
following three elements, as shown on Fig. 1: 

• the user processes represent actual applications 
and protocols that are being tested, including rout-
ing daemons, 

• the topology manager manages virtual network in-
terfaces and performs packet switching according 
to the topology information at a certain moment in 
time, and 

• the graphical user interface (GUI), used to visual-
ize the emulated network and to induce the topol-
ogy information to the topology manager 

 
All the components, including the topology manager, 

run in the user space of the Linux operating system.  
Root-privilege is only needed to configure the virtual 
network interfaces.   

 On top of this basic emulated network infrastructure, 
user processes hook to virtual Ethernet network devices, 
called TAP devices.  TAP devices are available in the 
Linux kernel and provide low level support for Ethernet 
tunneling.  User processes can send and receive data via 
TAP interfaces using the classical socket API, thus 
achieving portability of code.  The only requirement for 
the sockets is to use the specific option 
SO_BINDTODEVICE, ensuring that a process’ socket 
will listen and send only to the specified interface, and 
thus not interfere with traffic addressed to some other 
process.  This is an important requirement having in mind 
that all the emulated processes run on the same machine.  
One example of such user processes are the routing dae-
mons.  Since this infrastructure emulates the physical and 
the link layer of MANETs, we must first establish an IP 
infrastructure by means of routing daemon processes 
hooked to the TAP interfaces.  Other processes that are 
hooked to the same interfaces can afterwards use the es-
tablished IP infrastructure, allowing us to implement and 
test middleware and application layer protocols, which 
was exactly our goal.  A group of processes hooked to the 
same TAP interface represents a node in the emulated 
network, called virtual node. 

TABLE I  
PROPERTIES OF VARIOUS NETWORK EMULATORS 

 
 MobiEmu MNE EMWIN MobiNet JEmu 

Usage 9     

Low costs    9  

Scalability   9 9  

Portability 9 9 9 9 9 

Routing    9  

Comparability    9  

The topology manager is the core of NEMAN.  It is the 
user-space application creating and maintaining the TAP 
devices.  Since TAP devices provide Ethernet tunneling, 
we ensured independence with regards to the IP version 
being used.  Every frame received on a TAP interface is 
available to the topology manager, and every frame in-
duced by the topology manager into an interface is avail-
able to the processes hooked to it.  In other words, when 
the topology manager gets a frame sent to one of its TAP 
interfaces, it can then decide to forward it to some of the 
other interfaces (or none), according to the topology in-
formation it has at the moment.  Due to the fact that all 
the nodes run on a single machine, the routing table of the 
kernel is not taken into account (this is described more in 
depth in Section IV).  One TAP interface (in our case, 
tap0) is reserved as the monitoring channel, having an 
open bidirectional connection to all the other TAP inter-
faces, independent from the topology.  This is a very im-
portant feature, allowing us to perform analysis of the 
network traffic using standard tools such as tcpdump or 
ethereal.  Moreover, having in mind that the monitoring 
channel works both ways, we are able to use the same 
channel to induce traffic into the virtual network from the 
“outside world”.  This feature comes useful when appli-
cations or services need to be triggered at a specific mo-
ment of time.  An example of such a service is shown in 
Section VI.B. 

tap1 (...)

monitoring,
logging

control
channel

feedback
channel

>[] ||

monitoring
channel

tap2 tap3 tap0

Topology
Manager

GUI

Processes

 

The implementation of the GUI is currently based on 
MobiEmu’s GUI.  It is a Tcl/Tk script, independent from 
the topology manager and can run on a separate machine.  
The GUI shows the current position of nodes, their 
transmission ranges and links between nodes that can 
directly communicate with each other.  Topology and 
node movement data are acquired from standard ns-2 
scenario files, created by, for example, ns-2’s setdest pro-
gram.  Scenario files are interpreted sequentially, allow-

Fig. 1. NEMAN architecture 

 3

Figure 3.9: NEMAN Architecture [36]

Topology information are sent from the
GUI (upper part of the Figure)11 via a
UDS. It is called the control channel. The
GUI illustrates the network topology
and visualizes feedback from the pro-
cesses (lower part of the Figure). For
this purpose it parses the output of the
OSLR daemon used for routing on an
IP basis.
The authors claim that NEMAN is able
to handle a few hundred nodes on a
single machine, but show only an exper-
iment with 100 nodes.
The tool relies on ns-2 scenario files for
the description of mobility and topol-
ogy. Note that NEMAN does not apply
link effects. Ns-2 is not used for net-
working, only for the scenario format.
An interesting feature is that the emulator allows to induce events at certain times. The

9https://www.gns3.com
10With the SO BINDTODEVICE socket option
11The GUI is derived from the MobiNet GUI and used Tcl/Tk
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3 Related Work

experimental evaluation points out some problems whose solution requires a kernel patch
[36], but may be included in a recent Linux kernel as the paper dates back to 2005.
Comparison: The approach of NEMAN requires binaries to be modified, in contrast to
MiniWorld. There is no virtualization layer at all since processes simply bind to a tap device.
Moreover, there is no link impairment.

3.5 Summary

Related work in the field of network emulation has been presented. Mac80211 Hwsim
together with a modification of Wmediumd builds the basis for MiniWorld’s WiFi network
backend. Open vSwitch may be a good alternative to Linux bridges, but further research is
needed if the SDN switch provides link impairment itself or if the Linux TC system has to
be used.
MiniWorld’s Bridged LAN and Bridged WiFi network backends are based on the network
emulation approaches of CORE. Moreover, CORE scenario files can be built with the CORE
UI and used by MiniWorld’s CORE Mobility Pattern to switch between toplogies.
Container virtualization such as Docker could be used as additional virtualization layer
for scenarios where full system virtualization is not required since it does not introduce
additional emulation overhead.
There is no high fidelity link emulation, hence, MiniWorld could be combined with ns-3 as
described by CORE or Dockemu.
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4 Design

This chapter introduces MiniWorld to the reader. Initially, the abstract design is filled with
implementation details (Section ??). a short overview and the design goals of MiniWorld are
presented in Section 4.1. The overall architecture is depicted in Section 4.2. Afterwards, the
typical workflow with MiniWorld is described in Section 4.3. Following is the introduction
of the Scenario Config in Section 4.4. The different interfaces a node can have, are discussed in
Section 4.5. The process of starting nodes and the integration of a network backend within
MiniWorld is illustrated in Section 4.6. The REPLable mechanism is presented in 4.7. Link
quality models are discussed in Section 4.8. Movement pattern are depicted in 4.9. Finally,
the architecture of all 4 network backends is presented (4.10), followed by the distributed
mode (Section 4.11).

4.1 Short Overview & Design Goals

MiniWorld is a network emulator framework. It provides great flexibility because it al-
lows to emulate arbitrary programs and systems. This flexibility is traded by performance
due to the usage of full system virtualization. Therefore, MiniWorld is neither limited to
emulating Linux binaries nor to emulating Linux VM images even though MiniWorld itself
only runs on Linux.
Full system virtualization poses high demands on resources, but MiniWorld is nevertheless
build with performance in mind.
A Snapshot Boot Mode enables VMs to boot from snapshots and reduces the time needed to
start the Virtual Machines drastically. Especially the switching of network topologies has
been studied extensively, allowing to switch huge topologies in a few seconds. To remove
the bottleneck introduced by full system virtualization, MiniWorld allows every Linux OS
to participate in the emulation. In particular, network communication in the distributed
mode is very fast to reduce possible bottlenecks which may arrive from the coordination of
clients.
MiniWorld’s goal is to be a network emulation framework. Therefore, modularity and ex-
changeability are very important design goals. Network backends, link quality models and
movement patterns can be exchanged easily. MiniWorld comes with 4 network backends, 4
mobility patterns and 3 link quality models. Despite MiniWorld’s goal to be a framework, it
is usable without any further modifications and/or extensions.
Finally, transparency is one of MiniWorld’s design goals. Network emulators are mostly
complex systems, making debugging and traceability very hard. Therefore, the important
steps in the emulation process such as booting the VMs and especially switching to another
network topology are logged to stdout as well as to log files. The commands needed to
create a particular network topology are written transparently to a log file. This enables
users of MiniWorld to extract the topology and get a better idea of how network switching
is done in the particular network backend. Summing up, the design goals of MiniWorld are
as follows:
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4 Design

• Performance (Concurrency, Distribution)
• Flexibility (Virtualization)
• Modularity & Exchangeability (Framework)
• Transparency (Network Switching and Shell Command Logs)

In the following the typical workflow of MiniWorld is presented. This gives the reader a
better understanding of what MiniWorld is and how it works.

4.2 Architecture

The architecture of MiniWorld is depicted in Figure 4.1. An Analyst requires 2 things to

MiniWorld

Simulation 
Manager

Image Store

Scenario 
Config

Analyst

Address 
Configuration

Network 
Supervision

Mobility 
Pattern

Network 
Backend

Start / 
Stop

Step

Node Virtualization

Virtual 
Network

Figure 4.1: MiniWorld Architecture

start a simulation: A Scenario Config and an image from the Image Store. The config
summarizes all information that are required to start the simulation and to setup the Virtual
Network. An image bundles the software an Analyst wants to evaluate.
The simulation lifecycle is handled by the SimulationManager. This includes starting and
stopping of a scenario. A step changes the topology of the Virtual Network and requires a
distance matrix from the Mobility Pattern. The matrix contains the distances between any
nodes. Stepping can be performed by the user or automatically by the SimulationManager. The
network topology is changed by the Network Backend. The Virtual Network consists of nodes
which are provided by means of virtualization. The Network Backend (impairment model)
can operate either in user-space or kernel-space and is responsible for the link setup and
impairment. The impairment scenario may be static, trace-based or event-driven. Address
Configuration and Network Supervision are optional elements which are incorporated
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4.3 Workflow

into the design of MiniWorld. The first enables nodes to communicate with each other by
means of addresses, the latter supervises the network setup of the Network Backend. The
Network Supervision feature proves that the network topology has been setup correctly so
that experiments which are conducted within MiniWorld are reliable. Moreover, it eases the
integration of new Network Backends.
All turquoise depicted rectangles in Figure 4.1 are per design exchangeable. The abstraction
which is provided by the SimulationManager enables the MobilityPattern and Network Backend
to operate independently of each other.
The 2 design goals modularity and exchangeability are incorporated into the abstract design
of MiniWorld. The remaining design goals (Transparency and Performance) depend mostly
on the implementation of the Virtual Network which is maintained by the Network Backend
and the Virtualization Layer

4.3 Workflow
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Figure 4.2: MiniWorld Workflow

Figure 4.2 points out the workflow of MiniWorld. Initially, the system has to be started (1).
The analyst can create a new VM image or use an existing image from the Image Store (2).
In this step the software or OS which shall be tested, has to be prepared to be usable with
MiniWorld. This requires only a few modifications of the VM and is described in Section
5.7. In the next step a scenario has to be created (3). It bundles the settings of the emulation
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4 Design

such as the number of nodes, the node images, defines the Network Backend, Mobility Pattern,
Impairment Scenario etc.
If MiniWorld is used in the distributed mode, the VM images have to be deployed to all
computer in the MiniWorld cluster (4).
Finally the emulation can be started by supplying the Scenario Config to the MiniWorld
interface (5).
The simulation start process of MiniWorld (right side of the Figure) is as follows: First the
Scenario Config and the Global Config are read. The first bundles the scenario description in
one config file while the latter holds configuration settings which endure a scenario. These
settings are accessible by all objects in MiniWorld. Afterwards the SimulationManager and
the VMs are started. The SimulationManager takes care of the simulation lifecycle such as
starting, resetting the simulation and updating the network topology.
MiniWorld needs to know when a VM has finished booting. This is accomplished by either
letting MiniWorld know for which string it has to wait (boot mode: Boot Prompt) or by
simulating pressing enter and waiting for the shell prompt (boot mode: Shell Prompt).
Furthermore, nodes are started in parallel to achieve better performance. After all nodes
have been started, the VMs are provisioned according to the shell commands supplied in
the Scenario Config. The mechanism can be used to setup and/or customize nodes.
MiniWorld can be set up to switch the network topology in configurable time steps (nor-
mally one second) automatically. Note that an analyst can also manually switch the network
topology (6).
The SimulationManager cooperates with the MovementDirector which keeps track of nodes
mobility. It provides a distance matrix which serves as input for the Impairment Scenario
which governs over node connectivity and link quality. Finally, the NetworkBackend is respon-
sible to create or switch the network topology according to the outcomes of the Link Quality
Model and the Mobility Pattern. Furthermore, a scenario can be stopped and afterwards
started again (7).

4.4 Scenario Config

MiniWorld aims to be flexible without neglecting the ease of use. Everything in MiniWorld
depends on 2 configs: The Global Config for settings which are meant to endure a scenario and
the description of a scenario with the help of the Scenario Config. Both configs are powered
by the same config system. For simplicity, both configs are accessible via a singleton class
inside MiniWorld.
Configuration of complex scenarios results in long config files which is prone to errors.
Hence, the config system allows to limit the values for a specific key via a white-list
approach. Moreover, default values reduce the size of configuration files. Mandatory keys
can be marked such that an error occurs if no value is defined for a particular key.
A key requirement for the config system is that the change of keys inside the config does not
require changes of the config API which is exposed to MiniWorld objects. Hence, a binding
between between entries in the config file and the config API is required.

4.5 Interfaces

Virtualized nodes can have multiple interfaces to create separate network segments. Built-in
interfaces are Ap, Ad-Hoc, Mesh, Bluetooth and WiFiDirect. Each node can have multiple
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4.6 NetworkBackend Communication

instances of an interface type. Interface instances of the same type are enumerated. An In-
terfaceFilter decides which interfaces are connected to each other. The default InterfaceFilter
allows only interfaces of the same type and index to be interconnected. A NetworkBackend
can define its own InterfaceFilter to change this behaviour.
Interface types can be treated specially by the Address Configuration component. For example
they can be put into different network subnets. Future versions of MiniWorld may allow
the Impairment Scenario to govern over link quality based on distance and additionally the
interface type. Bluetooth connections for example may have a lower bandwidth than Mesh
connections.
There are 2 special interfaces: The first is the Hub interface which connects all interfaces to
one or more hubs. These hubs are internally represented by a CentralNode. It is up to the
network backend to provide a class for this purpose.The Hub interface models a scenario,
where all nodes are in the same collision domain without mobility involved. It provides an
easy opportunity to simulate scenarios such as a football game where people are crowded.
Only static link impairment can be applied since there is no mobility.
The other special interface is used for management purposes. In contrast to the Hub in-
terface, a Management interface is not affected by link quality impairments. It serves as a
management/side channel which can be used in experiments for control information or
ssh automation. A ManagementNode has to be provided by a NetworkBackend to support the
management network.

4.6 NetworkBackend Communication

The core of the framework handles starting the virtual nodes and setting up the network.
In the following the emulation start process is explained. Afterwards the integration of a
network backend into the MiniWorld emulation framework is depicted.

4.6.1 Simulation Lifecycle

Figure 4.3 illustrates the emulation start process which is triggered by the user via an IPC
interface. The SimulationManager coordinates the start process. First a lock is acquired to
prevent multiple starts of a scenario. Moreover, the lock blocks an IPC call until all nodes
have been started and the first network topology has been created, but only if the RunLoop
is used. After the first step of the RunLoop, the lock is released.
The NetworkBackendBootstrapper object holds the types of the emulation node, the net-
work backend, the switch type, the connection type etc. It servers as a container for all types
which are exchangeable in MiniWorld. In the NetworkBackends module, the bootstrapper
object is dynamically populated with the types, especially the network backend what shall
be used.
After the bootstrapper has been created, the network backend type is taken from the
bootstrapper and created. Note that the bootstrapper object also solves recursive import
problems between for example the network backend and a connection object. Static at-
tributes and the class can be accessed via the bootstrapper. Furthermore, the network
backend can be used everywhere in the code because it is available as a singleton.
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Figure 4.3: Simulation Lifetime Sequence Diagram

Afterwards the nodes which are provided by virtualization are started in parallel1. Node
provisioning allows shell commands to be executed before and after the first network
topology has been started. Pre Network Shell Commands are executed on the VMs after
they have been started, hence they are not part of a VM snapshot.
The Management Network is set up directly after all nodes have been started, but after the
Pre Network Shell Commands have been executed.
The hub interface has to be represented in the distance matrix since static link quality
impairment has to be applied (based on the distance). The CentralNodes have an own id
which needs to be respected in the distance matrix. Therefore for each connection to the
CentralHubs, an entry with WiFi distance is generated. The pre calculated distance matrix for
the CentralHubs is merged with the distance matrix from the MovementDirector afterwards
and improves performance due the caching.
Finally, the MovementDirector is created and snapshots of the VMs are taken. The next start
of the same scenario leverages the snapshots to improve overall start times.

1Depending on the settings of the Scenario Config
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Stepping can be done either from the RunLoop which calls the step method in well defined
time intervals (default: one second) or manually from the user. In both cases, the network
topology is created according to the distance matrix and the Impairment Scenario. Finally, the
lock is released. Note that the lock is released even further if no RunLoop is used. Moreover,
the Post Network Shell Commands are executed in parallel.
The rest of the emulation is controlled by the stepping of the RunLoop and illustrated in the
following.

4.6.2 Simulation Step

A well defined interface2 describes the control flow between the SimulationManager, the
NetworkManager and the NetworkBackend. Figure 4.3 outlines the integration of a network
backend in MiniWorld. The NetworkManager uses the information exchange between the
SimulationManager and the NetworkBackend to keep track of currently established connections
and the connection link quality (Connection Tracking, blue line on the SimulationManager
axis). This enables the SimulationManager to provide the NetworkBackend with different
callback methods to configure the virtual network.
The different callbacks are discussed in the following. There are different control flows
depicted in the Figure depending on the return types of the callback methods. Callbacks
which are not supposed to return anything, are marked with black arrows. Callbacks with a
return value are marked red. Code which is executed in the object itself is depicted with a
blue arrow.
Connection across servers is called for 2 nodes where at least one node is not represented
locally by means of virtualization. The method can be leveraged by a NetworkBackend in the
distributed mode to create tunnels. For that purpose the IP address of the remote server,
which is hosting the remote node, is supplied.
Some of the callbacks provide a method before and after a certain action has been performed.
For example there are two callbacks for the simulation step prefixed with either before or after
and are executed at the start and end of the whole step lifecycle.
Changes in the distance matrix are propagated to the NetworkBackend with both the full dis-
tance matrix as well as the changes between two distance matrices. This notification is used
by the NetworkManager to inform the EventSystem about the number of connections that
have to be established or taken down. This is necessary to correctly display the simulation
progress.
In the before link initial start callback, the NetworkBackend is expected to create a switch
and a connection for a new link between two peers. It is up to the NetworkBackend to reject
the creation of a new link. This is used by the NetworkBackend presented in Section 4.10.2.
The aforementioned method deals with the creation of new links. Links are viewed by
MiniWorld as stable. Therefore link up and link down are only called for existing links. If
the distance changes for two nodes, the LinkQualityModel decides whether the link shall be
taken down or up. Note that the callbacks are only notified if the links status really changes.
If the distance changes but the links status does not, there still might be a change in the
link quality. The before link quality adjustment callback gives the NetworkBackend the
opportunity to change the link quality.
Finally, depending on the IP Provisioner, the IP addresses of interfaces inside the node are
changed. Additionally, connectivity is checked by the NetworkManager on IP basis.

2NetworkBackendNotifications
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4.7 REPLable

There are many external processes with whom MiniWorld needs to communicate. The
interface offered by whose processes is mostly text based. Input is sent to processes and
output returned. Since there is only text, no return codes or exceptions are available. Thus,
the output has to be parsed according to specific patterns. There are two approaches to
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accomplish that: Either the successful output for some input is known, or there is pattern in
the output which points out an error.
REPL is the acronym for read-evaluate-print-loop. There are several components that are
expected to make use of the REPLable mechanism. One of them is the virtualization layer
since most virtualization software is capable of exposing the serial console of the VMs via
IPC. With the help of the REPLable mechanism it is possible to get a shell to a VM without
relying on tools such as ssh which requires network access.
Unfortunately, a serial console which is exposed via IPC does not offer the same functionality
as a real shell does since only text is returned. Hence, there is not such fine grained control
over the process compared to a real shell. MiniWorld needs to know then the process
is finished and which output belongs to sent input. Therefore, each class leveraging the
REPLable mechanism, needs to define a Shell Prompt. This prompt is printed to stdout by a
shell when a process exits or the user presses enter.
The REPLable mechanism is depicted in Figure 4.5. There are 3 classes illustrated. The first
object derives from the REPLable interface. It offers services that rely on external processes.
Additionally, it can check the return code of the executed commands. Note that there is no
blocking connection3 to the IPC service. Therefore, for a list of commands to be executed on
the VM, a new connection to the interface has to be created. The Figure outlines that the
connection establishment process blocks until the IPC interface is reachable. Some services
may not be ready or need the enter key to be pressed. This is simulated by sending a \n.
The processes is called Shell Entering. Newlines are sent until the Shell Prompt has been read.
Each class is connected to a TemplateEngine which allows variables to be replaced by strings.
The variable {node id} for example gets replaced by the actual node id. Commands are
postfixed with a newline and sent to the IPC interface. Data is read until the defined
Shell Prompt has been read. Note that multiple commands can be sent at once to the IPC
interface, thus improving performance. A class implementing the REPLable interface has
the possibility to implement additional checking for failures. This can be leveraged to check
the return codes of executed commands.

4.8 Link Quality Models

A LinkQualityModel controls the impairment which is applied to the virtual network (Impair-
ment Scenario). Static impairments are supplied via the constructor to the LinkQualityModel
and serve as default values. For each step and distance between two nodes, the Simula-
tionManager calls the LinkQualityModel. First, the model controls if a connection shall be
established at all. Second, the link quality is determined. For that purpose, the distance can
be taken into account.
The link quality is described by a dictionary. Not all network backends have the same
possibilities to impose link quality. Therefore, it is not possible to define a common format
of link quality models. Instead, it is up to the NetworkBackend to understand the keys and
values used by a Link Quality Model.
Currently there are 3 simple models shipped with MiniWorld. The first is a Fixed-Range
Model where nodes are interconnected if their distance is less than 30 meters. The band-
width is stable during a scenario and taken from the Scenario Config. Note that this model is
also usable for LAN emulation, where no mobility is involved. A MovementPattern using
the fixed-range model simply has to define the range between two peers between 0 and 30.

3The IPC interface is held open for shell access by the user
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The second model (WiFi Simple Linear) varies bandwidth and delay with respect to the
distance. It needs a maximum bandwidth to be defined. If no bandwidth is defined in
the Scenario Config, 54 Mbps/s is assumed. The bandwidth decreases linear and the de-
lay increases linear with the distance. The third model (WiFi Simple Exponential) halves
bandwidth and doubles delay every four meters.
Both WiFi models are limited to the Bridged Network Backend.
Table 4.1 illustrates the 2 simple WiFi models for distances between 0 and 29. For distance
0 and 1 the values stay the same. Beginning with distance 2, the bandwidth decreases
linear with the distance in the WiFi Simple Linear model. The WiFi Simple Exponential model
decreases bandwidth every four meters.
Note that both WiFi models define a variable delay which is used in addition to the constant
delay. Therefore the delay is Delay Const ± Delay Var where the delay depends to 25% on
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WiFi Simple Linear Model WiFi Simple Exponential Model

Distance Bandwidth Delay Const Delay Var Bandwidth Delay Const Delay Var

0 54000 0 0.0 54000 1 0.1

1 54000 0 0.0 54000 1 0.1

2 36000 1.0 0.1 54000 1 0.1

3 27000 2.0 0.2 54000 1 0.1

4 21600 3.0 0.3 27000 2 0.2

5 18000 4.0 0.4 27000 2 0.2

6 15429 5.0 0.5 27000 2 0.2

7 13500 6.0 0.6 27000 2 0.2

8 12000 7.0 0.7 13500 4 0.4

9 10800 8.0 0.8 13500 4 0.4

10 9818 9.0 0.9 13500 4 0.4

11 9000 10.0 1.0 13500 4 0.4

12 8308 11.0 1.1 6750 8 0.8

13 7714 12.0 1.2 6750 8 0.8

14 7200 13.0 1.3 6750 8 0.8

15 6750 14.0 1.4 6750 8 0.8

16 6353 15.0 1.5 3375 16 1.6

17 6000 16.0 1.6 3375 16 1.6

18 5684 17.0 1.7 3375 16 1.6

19 5400 18.0 1.8 3375 16 1.6

20 5143 19.0 1.9 1688 32 3.2

21 4909 20.0 2.0 1688 32 3.2

22 4696 21.0 2.1 1688 32 3.2

23 4500 22.0 2.2 1688 32 3.2

24 4320 23.0 2.3 844 64 6.4

25 4154 24.0 2.4 844 64 6.4

26 4000 25.0 2.5 844 64 6.4

27 3857 26.0 2.6 844 64 6.4

28 3724 27.0 2.7 422 128 12.8

29 3600 28.0 2.8 422 128 12.8

Table 4.1: Link Quality Models WiFi: (a) Linear Model (b) Exponential Model
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the last one.
LinkQualityModels may become very complex. To prevent them from slowing down the
connection switching process, the link quality settings for distances between 0 and 100
are precalculated (LinkQuality Caching). For that purpose, distances are rounded. This
approach is a tradeoff between performance and granularity.

4.9 Movement Patterns

In the following a short overview of the Mobility Patterns is provided. Note that most of
them have been implemented by Patrick Lampe who contributed code to MiniWorld during
an internship.
There are 4 different mobility patterns implemented at the time of writing. The first 2
are based on the Open Street Map (OSM)4 of Marburg. With the help of the OSM map, a
RandomWalk and a MoveOnBigStreets pattern is implemented. The second prioritizes
big streets where possible. The third Mobility Pattern is based on the Arma 3 game5 where
coordinates are extracted from the game for each player to feed a MovementDirector with
node positions.
The last Mobility Pattern is the CORE Mobility pattern. It leverages the UI of the CORE
emulation platform to place nodes graphically. Each topology file can be exported to XML.
The basic idea of the CORE Mobility pattern is to have multiple topology files. Each topology
can be switched after a predefined number of time steps. Moreover, there are different
parsers for the topology files. In the LAN mode, only the connections are extracted from the
topology file. For this mode, wired connections have to be used inside the UI. A Fixed-Range
Model inside CORE decides about the connectivity of nodes which is then parsed. In the
WiFi mode, wireless connections have to be used. Instead of checking which node are
interconnected, the coordinates of the nodes are parsed. The LinkQualityModel of MiniWorld
then decides about connectivity and link quality. Note that the canvas where nodes are
drawn onto should be resized so that nodes node distanced can be estimated in the UI.
The CORE Mobility pattern has been used for testing and also serves as a basis for the
experiments which are presented in Section 6. For most applications, repeatability is very
important. Together with the ability to define how the topology changes make this Mobility
Pattern very useful.

4.10 Network Backends

A network backend is one of the fundamental components of MiniWorld. It creates the
virtual network and takes care of adding and removing connections as well as adjusting the
link quality.
Network backends are supposed to follow an object-oriented design (but are not enforced)
where switches, links and tunnels are modeled as a class. To support the special interfaces
Management and Hub, they can provide special virtual nodes classes which take care of
starting and configuring the node(s). These are called ManagementNode and CentralNode
respectively. In addition, it may support distributed virtual networks. These management,
hub and distributed links may require custom setup but are integrated into the normal

4http://www.openstreetmap.org
5https://arma3.com
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NetworkBackendNotifications between the SimulationManager and the NetworkBackend. The
ConnectionInfo is supplied as parameter in methods of the NetworkBackendNotifica-
tions interface and can be used to distinct between code for the management, hub or the
distributed network.
Some network backends may also require custom command line arguments or special
behaviour of the virtualization layer. Therefore, a custom VirtualizationLayer class can be
used. The types of these custom classes are defined in the NetworkBackendBootStrapper
object. The custom VirtualizationLayer class and the ManagementNode are created by the
SimulationManager, the others by the network backend itself.
An InterfaceFilter gives a network backend the control which interfaces can be connected to
each other but the SimulationManager still enforces that only interfaces of the same type can
be connected.
Moreover, each network backend can influence if a custom Network Configurator is needed.
The Bridged Lan network backend for example requires a special configurator for point to
point links.
MiniWorld comes with 4 different network backends: The first is based on VDE (see Section
3.2.2). The second and third make use of Linux bridges. The fourth is a fork of wmediumd
and based on the mac80211 hwsim wifi simulator (See Section 3.3.3).
The VDE network backend is presented in Section 4.10.1. The Bridged based network
backends are depicted in Section 4.10.2. Finally the WiFi network backend which enables
real wireless devices inside the VMs is illustrated in Section 4.10.3.

4.10.1 VDE

Virtual Distributed Ethernet has already been introduced in Section 3.2.2. It comes with
a few user-space programs: The most important ones are VDESwitch (a switch) and Wire-
filter (link/cable between switches). Both provide an interface via a UDS socket. Therefore,
MiniWorld leverages the REPLable component to enable communication with the VDE
components. The VDESwitch interface allows to set the hub mode, manage VLAN, view-
ing switch ports and their links, enable color mode, set the number of ports and to enable
the fast spanning tree protocol. The Wirefilter interface allows to define the link quality
in terms of loss, delay, duplicate packets, bandwidth, speed, noise, MTU and even more
advanced modes which make use of markov chains.
MiniWorld provides Python wrappers for both objects, where calls are transparently redi-
rected to the UDS socket. Both check the return codes of executed commands by checking
for specific text patterns.
Figure 4.6 points out the architecture of the VDE network backend. 2 VMs are illustrated in
the Figure: One on the top and one on the bottom. The VMs have several interfaces where
each is connected to a VDESwitch. This enables to apply different link qualities for different
interface types. Note that a node can have more than one interface of the same type. Each
interface type is additionally put into a VLAN. In the Figure n represents a variable amount
of interfaces. Moreover, the special management interface is shown. A normal interface is
connected to another normal interface with a Wirefilter between them. This design allows
for each connection between two peers to define a custom link quality and emulates WiFi
behaviour where nodes have different signal strengths depending on the distance and
obstacles between them etc.
The color patch introduced in Section 3.2.2 allows the creation of a hop-2-hop network
instead of a single collision domain where all peers can see each other. Traffic is only
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forwarded between switch ports if their color differs. Note that a Wirefilter between two
VDESwitches always has color 0 by default. The interfaces of the VMs are connected to the
appropriate switches at boot time with a special command line parameter for the Virtualiza-
tionLayer. These connections have a color which is 6= 0. They are colored with the index of
the interface type which is common for the same interface type. Therefore, if 2 switches are
interconnected with a cable (Wirefilter), they can communicate because color n is not equal
to 0. Imagine, node 2 is connected to a third node. Node 1 cannot directly communicate
with node 3, because the Wirefilter has color 0 and packets are dropped if the color of the
incoming and outgoing port are the same. Communication between node 1 and 3 is not
directly possible and requires routing of node 2. This is the scenario of a WMN.
The Hub interface is also implemented for the VDE backend, and works as illustrated by
Interface n: Each node’s switch has a connection to any other.
The management network is quite different. There is one or more switches which are not
tied to a VM directly but are connected to a tap device on the host (CentralNode). Each
node’s switch is connected with a Wirefilter to one of the Central Switches which are also
interconnected. Therefore, node communication is not allowed. Instead, only the host can
communicate with the nodes and vice versa. The management network provides a perfect
channel instead of the other interfaces where link quality is applied by the Wirefilters.
Moreover, all calls to the UDS sockets are written to stdout. Depending on the logging level,
the UDS outputs are also shown.
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All switches except the one used for the management network, is set to operate as hub,
mimicking the wireless broadcast nature.

4.10.2 Bridged

The previous network backend used components running in user-space. In the follow-
ing the Bridged Network Backend is introduced to the reader. It leverages technologies
from the Linux kernel to create the virtual network. The most important parts are Linux
bridges and Linux TC. There are 2 Bridged Backends which differ in the way connections
between two peers are handled. The Bridged LAN Network Backend multiplexes connec-
tions via a single tap interface per MiniWorld interface, connected to the Virtualization-
Layer! (VirtualizationLayer!) process. In contrast, the Bridged WiFi Network Backend
uses one interface to represent a connection. For that reason, the latter backend is viewed as
static because the number of unique connections has to be known beforehand to set up the
number of NICs in the VMs. The first backend is considered as dynamic because it does not
matter how many unique connections are going to exist.
Due to the static and dynamic characteristics of the Bridged Network Backends, the Bridged
LAN Network Backend is a good candidate for emulating wired networks, whereas the Bridged
WiFi Network Backend fits to the demands of wireless networks.
Figure 4.7 outlines the architecture of the the Bridged Network Backend. Both nodes (top and
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bottom of the Figure) have separate interfaces which are provided by Qemu in terms of a
Device Model to the VMs. Each NIC (orange box) is associated with a tap device (red box) on
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the host. The user-space part of the tap device is a socket managed by Qemu. The creation
of the virtual network is done on the host, hence no involvement of the guests is required.
Tap devices are added to bridges. Because a NIC can only be enslaved to one bridge at the
same time, either multiple NICs are necessary inside the guests or connections have to be
multiplexed. These aforementioned differences make up the two different Bridged Network
Backends and are discussed in the following.
Both network backends rely on shell commands for the virtual network creation instead of
UDS automation used by VDE network backend. For that purpose, the ShellCommandSerial-
izer is used.

Bridged LAN

The Bridged LAN network backend is theoretically not limited to static topologies. Rather
the number of connections have to be known beforehand. The CORE Mobility Pattern allows
to define a collection of topologies together with the number of steps they shall remain.
The Bridged LAN network backend determines for each node the maximum number of
connections during the whole scenario. The VMs are then created with the necessary number
of NICs. Therefore, the Bridged LAN network backend is able to emulate WiFi networks
because each connection is represented by a NIC and thus to each connections impairments
can be applied with the Linux traffic shaping facilities. The two tap devices which are part
of a connection are put on a single bridge.
Note that the CORE Mobility Pattern is the only one at the time of writing which is supported
for this network backend. For other mobility patterns the distance matrix and thus also the
connection matrix is not known beforehand.
The representation of a connection with a single NIC basically creates point to point links.
Hence, two NICs which model a connection, are put into the same subnet6. The network
backend aims at being dynamically even if it is usable only for static connections. An idea
to overcome the limitations that the number of NICs need to be known before the VM
is started, is the use of hotplugging new NICs on demand by using the Qemu monitor
connection by means of UDS automation. Because this might be implemented in newer
versions, the network backend is kept dynamically. Therefore, an IP address is allocated to
the guest NIC first, then a connection is established.
The Bridged LAN network backends InterfaceFilter allows all devices to be connected to each
other. Therefore, the before link initial start callback method is triggered for every tap device
combination of two nodes for a new connection. Internally, the network backend remembers
which tap device is used and which is not. The network backend may reject a connection
in this callback when a tap device is already in use. The SimulationManager then skips the
link up and link down callbacks for the two tap devices. Moreover, the NetworkManager
notices that no connection has been established, therefore no other callback methods such
as for the link quality adjustment are called.

Bridged WiFi

In contrast to the aforementioned Bridged Network, the Bridged WiFi backend requires only
a single NIC to represent multiple connections. Therefore, for each MiniWorld interface a
NIC is configured for the appropriate VM.
Ebtables is the equivalent of iptables to create firewalls, but operates on the link-level instead.

6This subnet size and the IP ranges are configurable in the Scenario Config with the CIDR notation
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Then a new connection shall be established, ebtable rules based on the tap device names are
used for filtering. Additionally, connections are tracked in the Linux kernel by marking them
with an integer number. This enables the Linux traffic control facilities to apply different
link qualities based on the marked connections. Note that the aforementioned network
backend simply used the tap device to identify a connection.
The IP provisioning process is easier because each NIC can be configured once. Each
interface type is put on the same subnet where IP addresses are allocated starting by a
predefined CIDR IP range.

Execution Modes

There are different execution modes which vary in the way the virtual network is setup. In
the first execution mode the network is setup with iproute2 commands only. iproute2 requires
an up to date version compiled for the current kernel to support bridge commands. The
execution mode iproute2 provides high performance but requires custom setup. Therefore,
the execution mode brctl replaces all iproute2 bridge commands with the appropriate brctl
command. Both execution modes rely on shell commands. A third execution mode uses
pyroute27. It is a python library which communicates directly with the kernel via a netlink
socket and can be seen as the iproute2 equivalent for python.
In addition to the execution modes, there are different ways to execute shell commands.
Commands can be executed either sequentially or Parallel. Some commands even support
Batch operations which reduces internal overhead. The third option combines multiple
commands in one shell command (One Shell Call). Section 6.4.4 provides benchmarks for
the different execution modes and options.

4.10.3 WiFi

The WiFi Network Backend is not a pure network backend in MiniWorld. Instead it is a
combination of a real network backend with a user-space process inside the VM. Figure 4.8
illustrates the design of the WiFi Network Backend. The heart of the backend is the fork of
wmediumd user-space program (light blue) and the mac80211 hwsim radio simulator which
provides the WiFi Nic to the Virtual Machine (lightgray arrows).
Wmediumd uses the nl80211 interface to get the 802.11 frames from mac80211 hwsim. The
program emulates the 802.11 MAC layer with exponential backoff, QoS and signal strength.
Afterward these effects have been applied to the frames, they are send back to the kernel.
MiniWorld leverages the program as the basis for the WiFi Network Backend but drops the
wireless medium emulation, because it is very slow. Instead, frames are retrieved from the
wireless NICs and encapsulated into UDP datagrams which are send to a multicast group.
In the guest, multicast has to be routed via one of the devices which is provided by some of
the real network backends. At the receiving side, the 802.11 frames are extracted from the
UDP datagrams. Note that currently no impairment functions are available for the wireless
network backend.
The backend provides real WiFi device inside the guest which can be used to test the real
mac80211 and/or open80211s layer inside the Linux kernel. An example Scenario Config is
presented in Section 35. Note that the user-space program needs to be run inside the guest,
hence the approach is limited to Linux.

7https://github.com/svinota/pyroute2
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4.10.4 Summary

The integration of 4 network backends into MiniWorld has been presented. The Bridged
LAN network backend is not suited to emulate wireless network, since the wireless broad-
cast nature is not taken into account. The VDE, Bridged WiFi and WiFi network backend
mimic a broadcast channel, hence nodes which are interconnected, receive frames also from
its neighbours. This is achieved by the VDE and Bridged WiFi network backends by enabling
the hub mode of the switches. The WiFi network backend uses a multicast group, therefore
frames are distributed to all nodes.
The WiFi network backend does not offer link impairments at the time of writing whereas
the Bridged network backends leverage the Linux TC system. The VDE network backend
uses Wirefilters to model the link between nodes.

4.11 Distributed Mode

The distributed mode of MiniWorld aims at reducing the bottleneck that appears if a single
machine is out of resources. This may be due to missing CPU or memory resources. The
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distributed mode allows each Linux computer to take part in the emulation. In the following,
the node scheduling is introduced to the reader. Afterwards the distributed architecture is
presented.

4.11.1 VM Scheduling

The placement of virtual nodes on computers is essential for the distributed mode. The
resources of the computers have to be taken into account, to improve the scheduling
decisions. Server scores are communicated by each computer which takes part in the
emulation. The score includes the CPU and memory resources because they are the potential
bottlenecks. Network bandwidth would be nice to know, but is not part of the score at the
time of writing.
During the boot process of a Linux machine, a value is calculated which represents the
performance of CPU. The value is called Bogomips. Together with the free memory it serves
as input for the scheduler.
There are two so called NodeDistributionStrategies shipped with MiniWorld. The first is pretty
straightforward and assigns each computer the same amount of VMs (NodeDistribution-
Equal). A better approach is to make use of the score. The NodeDistributionScore allocates
the VMs according to the bogomips each computer has. Then, for each computer it is
check that the amount of free memory is not exceeded. Otherwise, the amount of VMs is
reduced until the memory fits the needs of the Virtual Machines. The unscheduled VMs are
afterwards distributed among all machines according to the CPU score. Note that individual
VM settings are not taken into account yet.

4.11.2 Communication

The distributed communication is build with ZeroMQ (ØMQ). In early prototypes RPyC
has been used to coordinate communication among a group of nodes but showed to be very
slow for more than round about ten clients.
ZeroMQ: ZeroMQ is a networking library written in C++. The ØMQ Guide [21] explains
it as following:”It’s sockets on steroids”. It is a very good summary, because basically it
provides very advanced socket types with various transports such as: in-process, inter-
process, TCP and multicast. Many to many or one to one communication can be depicted
with a single socket. There are many socket types built-in which help developing concurrent
applications.

4.11.3 ZeroMQ Communication Patterns

There are two important pattern used by MiniWorld.
Request-Reply Pattern: The first is the Request-Reply pattern where to each request a reply
belongs. The req and rep sockets can be used to implement this pattern which mimics the
behaviour of RPC. Note that any other order of messages is not allowed by ZeroMQ. The
pattern can be extended by Dealer sockets, which advances the pattern for many to one
communication. Messages from N clients are faire-queued and provided by a single socket.
Publish-Subscribe Pattern: The other pattern is the Publish-Subscribe pattern where multi-
ple clients subscribe to a publisher. It is a form of one to many communication and very fast
because communication is only one way. The pattern is implemented with two different
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socket types [21, 31].

4.11.4 Distributed Architecture

Figure 4.9 outlines the distributed architecture of MiniWorld. There are two clients and one
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Figure 4.9: MiniWorld Architecture Distributed

coordinator. The user can interact with any of these via the Remote Procedure Call (RPC)
interface to query information or execute commands on specific nodes. Note that direct
access to the RPC interface of the clients is not necessary. Instead the CLI interface connects
to the Coordinator RPC interface by default and redirects requests to the appropriate client if
necessary. The RPC interface of the Coordinator runs on a different port so that the Coordinator
and Client can co-exists on the same machine.
Starting a scenario and manually stepping can be accomplished by user via the CLI interface.
Note that the RunLoop is located on the Coordinator only. A step of either the RunLoop or the
user is communicated via the ZeroMQ layer for performance reasons. The distance matrix
can be distributed either with the request-reply or the publish-subscribe pattern.
In the case of the publish-subscribe pattern the distance matrix is sent to any subscriber
and filtered on the client-side so that only the part of the distance matrix is sent to the
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4.11 Distributed Mode

SimulationManager which contains nodes for which the client is responsible.
In the case of the request-reply pattern, the distance matrix can optionally be filtered on
the coordinator-side because it holds to each client a separate connection in contrast to the
publish-subscribe pattern.
The serialization format of messages is either JSON or MessagePack and configurable as well
as the communication pattern via the Global Config.
The ZeroMQ layer is modeled as a Deterministic Finite Automaton (DFA). The number of
clients is set in the Global Config and picked instead of a time based solution where clients
can register in a time slot.
The communication is asynchronous. For each state, clients need to send a request to the
coordinator. First if all requests arrived, the coordinator replies. In the Register State the
clients get an ID assigned which is used in the following communication states by the clients
for identification purposes.
In the Exchange State, clients can communicate information necessary for the simulation
to the Coordinator. The IP used for tunnels8 and a score used for node scheduling is sent
from each client. Afterwards, the Scenario Configs are sent to the clients. The Scenario Configs
include the tunnel address for each client and the decision of the node scheduler. Therefore,
each client knows for which nodes he/she and others are responsible.
Finally the appropriate nodes are started by each client. In the last state (State Distance
Matrix), the SimulationManager receives a step call from the user via RPC interface or the
RunLoop. The distance matrix is then distributed via the request-reply or alternative via the
publish-subscribe pattern.

8Controlled by a command-line parameter of the client program
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The following chapter provides insights into the implementation of MiniWorld. Initially,
the abstract design is concretized and filled with implementation details (Section 5.1). After-
wards the format of the Scenario Config and implementation details are discussed. For that
purpose, a B.A.T.M.A.N. Advanced Scenario Config for MiniWorld is presented (Section 5.2.1).
The binding between the scenario config file and the internal representation is depicted in
Section 5.2.2.
Following is the implementation of the node system in Section 5.3. The network configura-
tors including connectivity checking is discussed in Section 5.4.
The implementation of the network backends is illustrated in Section 5.5. The Command
Serialization feature is used by the Bridged network backends and presented together with
their implementation. Afterwards, the implementation of the Bridged link impairment is
presented in Section 5.5.2.
The implementation of the distributed mode is depicted in Section 5.6.
Creating and deploying an image as well as the modifications required by MiniWorld are
introduced in Section 5.7.
The CLI is illustrated in Section 5.8. The Event System is used to track progress of operations
and utilized the CLI to inform the user about the progress. Is is presented in Section 5.8.1.
The CLI system and error checking is discussed in Section 5.8.2. Finally, the source code for
an experiment in MiniWorld’s distributed mode is depicted in Section 5.8.3. It demonstrates
the CLI of MiniWorld.

5.1 Implemented Architecture

Figure 5.1 depicts the overall architecture of MiniWorld. The left side of the Figure points
out that all functions of MiniWorld are accessible by an RPC interface. Note that there is
also a Command Line Interface built on top of the RPC interface. The reason for the RPC
interface is that this approach enables to easily create a web UI for MiniWorld. Furthermore,
automation can be done easily.
All classes with dashed line frames, are meant to be exchangeable by the user. The upper
part of the Figure shows the core of MiniWorld. The SimulationManager is responsible for
the simulation lifecycle. This includes starting of a scenario, stopping it as well as cleaning
up afterwards. The MovementDirector1 is called by the SimulationManager for each step. A
step can be triggered either automatically from the RunLoop or manually by the user. For
that purpose, he/she has to use the CLI or RPC interface. The MovementDirector returns for
each node the distance it has to another node. This allows the LinkQualityModel to decide
based on the distance between two nodes whether they shall be connected. Moreover, if
a connection between two peers shall be established, attributes about the link quality are
returned too. It is up to the NetworkBackend to apply these attributes on the virtual links.
After the distance matrix and the link qualities have been obtained, the SimulationManager

1Credits for the movement patterns go to Patrick Lampe, the code is left from a university internship
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Figure 5.1: MiniWorld Architecture Implementation

calls for each connection that has to be established (according to the LinkQualityModel) the
NetworkBackend. The communication between them is silently observed by the NetworkMan-
ager which keeps track of currently established connections. It does so, by calling specific
methods of the NetworkBackend.
The connection tracking of the NetworkManager is used by the SimulationManager to im-
prove performance. The NetworkBackend is only notified about new connections, nodes
which are out of range and shall be disconnected and those there the link quality has to
be adjusted. The internals of the NetworkBackends are discussed in Section 4.10. Note that
network backends which rely on shell commands to create the virtual links, can make use
of the ShellCommandSerializer. It allows commands to be arranged such that a sequence of
commands can be executed in parallel. These commands can then either be executed in
parallel, in one shell call or in batch mode for those commands who support it. See Section
4.10.2 for further information.
The connection switching has been illustrated briefly. Following is a description of the
node virtualization. Each virtual node is represented by the EmulationNode class. A node
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consists of several interfaces. The SimulationManager allows only interfaces of the same type
to be interconnected. For other types, the NetworkBackends callback handlers are simply not
notified.
Each node is represented by a Qemu instance. In the background KVMs are started. If the
processor does not support VT, the dynamic translation capabilities of Qemu are leveraged.
This is also true when a different than the native processor architecture has to be emulated.
The Qemu class and the Qemu process are interconnected by a Unix Domain Socket. This
gives MiniWorld control over the VM without requiring network to be set up in the VM (for
example for ssh). The shell prompt of the VM is configured in the Scenario Config. The UDS
of the Qemu process is connected to the serial console of the VM. This enables MiniWorld
to view the kernel and boot log. The boot process is finished if either the boot prompt or
a user configured string has been read on the serial console2. An additional UDS socket,
connected to the Qemu Monitor, allows MiniWorld to interact with the Qemu process. The
monitor connection allows for example the creation of snapshots which is leveraged to
support the Snapshot Boot Mode.
Not relying on ssh for the node provisioning process, enables MiniWorld to configure the
VM without any preconfigured network settings. Network setup commands are simply
sent to the Unix Domain Socket.
Commands which shall be executed on all or only a specific node are stored inside the
Scenario Config. An optional NetworkConfigurator takes care of providing each interface of a
VM with an IP address. Note that there are two different kinds of network configurators
available. Moreover, each NetworkBackend may decide to use a custom implementation, thus
making the network configuration component exchangeable.
Note that even the virtualization layer can be exchanged so that containers virtualization
may be added to MiniWorld.
The NetworkConfigurators not only provides IP addresses to the VM interfaces, they also
provide a feature to test network connectivity based on the IP layer. The default connectivity
check is performed with the ping command. Only changes in the network topology are
checked (Differential Network Checking). This means that only new3 links are checked
for connectivity. The connectivity checking feature especially helps in the development of
new network backends.
Processes, especially Qemu, is started with the help of the Process Management component.
It takes care of starting fore- and background processes. It monitors the exit codes and
redirects stdout as well as stderr to the LogWriter. The processes output is written to a file.
The output of different processes is multiplexed by appending the output with a prefix.
The LogWriter could be easily changed to redirect the processes stdout and stderr to a SQL
database instead.
Throughout all operations in MiniWorld, the Event System is notified about the progress
of each operation. Each node has certain events and an associated progress value. The
simulation progress is then calculated from the node progresses.

2The VM needs to be configured such that a shell is automatically spawned on the serial console. Moreover
autologin facilities have to be enabled on this console. See Section 5.7 for further instructions

3It would be also possible to check if tearing down a connection has been successful, but requires a ping
with a timeout. This timeout needs to be so high that perfect accuracy can be achieved and slows down network
checking enormous.
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5.2 Scenario Config

The config system of MiniWorld is based on JavaScript Object Notation (JSON). The file
format was chosen due to its simplicity and the possibility to group elements in a nested
way.
There are two config files in MiniWorld. The Config holds static settings which are durable
as long as the MiniWorld service is started. The second one is the Scenario Config. It bundles
the describing elements of a scenario in one file.
In the following first an example Scenario Config for B.A.T.M.A.N. Advanced is discussed
(Section 5.2.1). Finally, the binding between the textual representation and the definition of
a config API via the config system is illustrated in Section 5.2.2.

5.2.1 Example Scenario Config

Figure 1 shows a Scenario Config for the batman advanced routing protocol which operates
on the link layer. First the scenario needs a name (line 2). The name needs to be unique
because it is used by MiniWorld for VM snapshots. The third line declares the number of
nodes which shall be created. Line 4 introduces a new section there all entries deal with the
provisioning of nodes. First the image is declared for all nodes. The config system allows
customization of the entries for each node. Line 39 shows the customization of node one
which has another image and more RAM allocated. In the example the first node is used as
the coordinator of an experiment and needs extra scripts in the image. The same behaviour
can be achieved by customizing VMs with custom images mounted inside the VM. Custom
CLI parameters can be passed to Qemu in the qemu section (line 22).
In order to check whether a VM has already booted, the node provisioning system uses the
regular expression declared in line 6. The commands depicted in shell.pre network start (line
7-15) are executed on the serial console of the VMs to set up B.A.T.M.A.N. advanced.
The network section (line 24-37) states that a chain topology shall be used for the first 30
steps. Afterwards the topology is switched to a grid of the same size. The topology files
have been created with the CORE emulation tool. The mobility pattern is called CORE and
enables to switch between XML defined topologies in defined time steps. Line 35 shows
that the LAN mode shall be used. The LAN mode only takes into account whether nodes
are connected according to the XML files. In the WiFi mode of the CORE nobility pattern,
the distances between nodes are used to determine link qualities between nodes. Moreover,
a topology description can also be looped.
Note that not all values in the Scenario Config have to be supplied. Built-in default values
are taken for unspecified values. The config system has a list of expected arguments for
each config option and knows whether a value is required or the default value can be taken.
In the illustrated example, the connectivity checker is enabled because the default value
is taken. Therefore, the IP configuration of the nodes is also enabled. Line 27 declares that
only NICs with the bat prefix shall be provisioned with an IP address. Hence, bat0 gets an
IP address.
The Scenario Config has a variety of configuration options. A sample Scenario Config can be
found in the appendix (Listing 38).

1 {

2 "scenario" : "batman-adv",

3 "cnt_nodes" : 128,
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4 "provisioning" : {

5 "image": "debian_8_batman_adv.qcow2",

6 "regex_shell_prompt" : "root\\@miniworld\\:\\~\\#",

7 "shell" : {

8 "pre_network_start": {

9 "shell_cmds": [

10 "ifconfig eth0 0.0.0.0",

11 "modprobe batman-adv",

12 "batctl if add eth0"

13 ]

14 }

15 }

16 },

17 "qemu" : {

18 "ram" : "256M",

19 "nic" : {

20 "model" : "virtio-net-pci"

21 },

22 "qemu_user_addition": "-hdb special_image.img"

23 },

24 "network" : {

25 "links" : {

26 "configuration" : {

27 "nic_prefix" : "bat"

28 }

29 },

30 "core" : {

31 "topologies" : [

32 [30, "distributed/chain_128.xml"],

33 [0, "distributed/grid_128.xml"]

34 ],

35 "mode" : "lan"

36 }

37 },

38

39 "node_details": {

40 "1": {

41 "provisioning" : {

42 "image": "debian_8_batman_adv_experiment_coordinator.qcow2"

43 },

44 "qemu": {

45 "ram": "1024M"

46 }

47 }

48 }

49

50 }
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Listing 1: B.A.T.M.A.N. Advanced Scenario Config

5.2.2 Scenario Config Binding & API

The bridge between entries in a config file and the Application Programming Interface (API)
is built by decorators. Listing 5.2 shows how both fit together. A part of the Scenario Config is

1 {

2 "network" : {

3 "backend" : {

4 "execution_mode" : {

5 "name" : "iproute2"}}}

6 }

(a) Scenario Config

1 @customizable_attrs("network", "backend",

"execution_mode", "name",

default="iproute2",

expected=["iproute2", "pyroute2",

"brctl"])

↪→

↪→

↪→

↪→

2 def get_network_backend_bridged_

3 execution_mode(self):

4 pass

(b) Scenario Config Implementation

Figure 5.2: Config System

illustrated on the left side. The value for the key network→backend→execution mode→name
is iproute2. The key is supplied to the decorator which is depicted on the right side of Listing
5.2. Additionally, the config system can restrict the possible values (expected keyword) and
set a default value if the key is not supplied at all. Keys can also be marked to provide
a value which is not None. The usage of decorators enables to form an API which is not
affected by changes of keys in the config file. Instead, the name of the method which is
decorated builds the API.
Adding new keys to the config system is as easy as adding a new method to it which is then
accessible by all components in MiniWorld.

5.3 Node System

Figure 5.3 illustrates the node system implemented in MiniWorld. The most important
object is the EmulationNode (middle of the Figure). It takes care of abstract node man-
agement functions such as the starting of the node virtualization layer and running the
{Pre,Post} Network Shell Commands. The EmulationNodeNetworkBackend object decou-
ples the network functionality from the EmulationNode and manages the interface for each
node. The VirtualizationLayer class is the implementation of the node within the specific
virtualization technology. Currently there is only the Qemu virtualization layer deployed.
Qemu has two UDS connections: One to the serial console of a VM, the other to the Qemu
Monitor. Both are handled by the REPLable mechanism.
States which need to be reset to start a new scenario can be handled by subclassing from the
StartableSimulationStateObject. It registers itself in a garbage collector like object which
cleans up the state of every registered object by calling a specific method.
The EmulationNode, VirtualizationLayer and the EmulationNodeNetworkBackend are part of the
NetworkBackendBootStrapper singleton. The type of the classes are dynamically populated
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after the Scenario Config has been set and used everywhere in the code to create the appro-
priate object. This enables to simply switch out implementations by changing the type in
the NetworkBackends class.
Listing 2 depicts the code used for starting nodes within a specific virtualization layer.

1 def _start(self, *args, **kwargs):

2 # get local destined arguments

3 flo_post_boot_script = kwargs.get("flo_post_boot_script")

4 if flo_post_boot_script is not None:

5 del kwargs["flo_post_boot_script"]

6

7 self.emulation_node_network_backend.start()

8

9 # start virtual node

10 self.nlog.info("starting node ...")

11 self.virtualization_layer.start(*args, **kwargs)

12 self.nlog.info("node running ...")

13

14 # notify EventSystem even if there are no commands

15 es = singletons.event_system

16 with es.event_no_init(es.EVENT_VM_SHELL_PRE_NETWORK_COMMANDS,

finish_ids=[self.id]) as ev:↪→

63



5 Implementation

17 # do this immediately after the node has been started

18 self.run_pre_network_shell_commands(flo_post_boot_script)

19

20 self.do_network_config_after_pre_shell_commands()

Listing 2: EmulationNode Start

All arguments supplied to the start method are passed on to the virtualization layer.
Arguments for the EmulationNode itself are discarded from kwargs. Flo post boot script is a
file-like object containing the Pre Network Shell Commands.
First the EmulationNodeNetworkBackend is started (line 7). The VirtualizationLayer is started
afterwards. Note that currently only the KVM/Qemu virtualization layer is implemented,
but the development of a new one is straightforward due to the dynamic NetworkBackend-
BootStrapper which supplies the type for the virtualization layer class variable.
Objects specific to a node have a special logger (line 10,12) which prefixes output with the
node number.
After the node has been started, the Pre Network Shell Commands are executed (line 18). This
is handled by the VirtualizationLayer. In case of Qemu, the REPLable mechanism is used to
execute the commands. The EventSystem is notified afterwards about the event (when the
ContextManager exits). Finally the EmulationNodeNetworkBackend is notified that commands
have been executed. It leverages this to rename the management interface inside the host.
Listing 3 outlines the commands executed on node one.

1 1>>> last_eth=$(ls -1 /sys/class/net/|grep eth|tail -n 1)

2 1>>> ip link set name mgmt $last_eth

3 1>>> ifconfig mgmt up

4 1>>> ifconfig mgmt 172.21.0.1 netmask 255.255.0.0 up

Listing 3: Management Network Interface Setup By EmulationNodeNetworkBackend

The 1>>> is inserted by MiniWorld to multiplex the command automation for all nodes
to stdout. The management interface is always the last one. Therefore, the interface name
can be fetched from /sys/class/net/ and renamed with the iproute2 command. Note that this
solution works only for Linux guests with iproute2 installed. If the guest does not offer
these attributes, the commands are still executed but fail. Therefore, no checking for the exit
codes is done here.
The code is triggered from the EmulationNode. There is a callback method which allows
actions to be performed for further configuration of the network. It is called after a node
has been started and the Pre Network Shell Commands have been executed. The management
setup and further customization can be achieved by exchanging the EmulationNodeNetwork-
Backend in the NetworkBackendBootstrapper object4.

4The object is dynamically populated with class types in the NetworkBackends class
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5.3.1 Qemu

There are a lot of things to consider when starting a Qemu VM. MiniWorld does not rely on
libvirt, instead it uses plain Qemu to leverage the full flexibility of the emulator. The Qemu
CLI command is built from many options declared in the Scenario Config. The number of
NICs has to be incorporated into the Qemu command. For that purpose, MAC addresses
need to be created which are derived from the node id. A MAC address has 48 bits. The
first byte is used for the node class, which is an integer representing an interface type. The
second bit is used for the number of the interface. Therefore, 28 = 256 interfaces of the same
type are currently supported in the MAC address scheme. The remaining 32 bits are used
to encode the node id (24∗8 = 4, 294, 967, 296).
For the default image, an overlay image is generated to make use of the Copy On Write
mechanism. For this the QCOW25 image format is used which has the COW acronym in
its name. For each node image and for images defined to have a COW layer6, an QCOW2
image is created with the qemu-img command. The base file used for the COW layer is called
backing file.

1 qemu-img create -b <image> -f qcow2 <overlay>

Listing 4: Qemu Overlay Image Command

The mechanism enables to define one image used by all nodes without affecting each
other by providing a common read only layer to all nodes. Due to the write layer, changing
the backing file requires to define either the new write layer in the Scenario Config or manually
modifying the backing file as illustrated in Section 5.7. The command to create the overlay
image is depicted in Listing 4.
Booting a VM is easy, but checking if the start process is finished, is not. There are three Boot
Modes implemented. A custom string can be printed to the serial console’s output by writing
for example to /proc/kmsg. /etc/rc.local is a good place for Linux systems to signal MiniWorld
that the boot process is finished. This string is called Boot Prompt7 in the following. Some
OpenWRT versions for example print "procd: - init complete -" to the kernel log.
The second boot mode follows the idea of mimicking a human being. For that purpose,
pressing the enter button is simulated by sending \n to the serial console of the VM in
predefined time intervals. If the Shell Prompt8 is detected in the output of the UDS, the VM
has booted. Both modes rely on a python 2 backport of the selectors9 package to provide
efficient I/O multiplexing. The default select system call is limited to 1024 file descriptors
and is not as fast as for example the epoll mechanism. For BSD, kqueue is the most efficient
selector. The package provides the best selector in terms of speed independent of the OS.
The described boot modes are called Selectors Boot Prompt and Selectors Shell Prompt.
There is another implementation using the Boot Prompt based on the pexpect10 package. It is
a implementation mimicking the original expect command which can be used to automate

5https://en.wikibooks.org/wiki/QEMU/Images#Copy_on_write. Last viewed on 27.11.2016.
6Key provisioning→overlay images in the Scenario Config.
7This string is defined in provisioning→regex boot completed in the Scenario Config.
8The string returned by the Shell if enter is pressed.
9https://docs.python.org/3/library/selectors.html. Last viewed on 27.11.2016.

10https://pexpect.readthedocs.io/en/stable/
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interactive programs such as telnet. The Pexpect Boot Prompt mode was the first in Mini-
World, but is superseded by the selectors implementation due to the limitations11 of the
select system call.
The boot time times of full system virtualized VMs are very high in contrast to lightweight
virtualization. A special boot mode called Snapshot Boot Mode tries to reduce these times.
Snapshots are taken from the VMs. For that purpose, {savevm,loadvm} <snapshot name>
commands are sent to the Qemu Monitor. If a snapshot cannot be loaded, the string Device
’.*’ does not have the requested snapshot is used to detect an error. In that case, a VM is booted
normally. The snapshot name is taken from the name declared in the Scenario Config. The
snapshot is linked to the Qemu process, therefore it is stored in the QemuProcessSingle-
tons class for each node. Classes execute commands with the help of the ShellHelper. The
processes are then managed by the ShellHelper singleton. This includes the multiplexing
of stdout and stderr to a log file as well as the shutting down the process if the scenario
is stopped. In the Snapshot Boot Mode, the Qemu process has to be kept alive to keep the
snapshot. The process if first shut down, if a new VM with a different scenario name is
started.

5.4 NetworkConfigurators

NetworkConfigurators provision VMs by means of IP and enable network connectivity check-
ing. The setting of IP addresses inside a Linux VM could be implemented easily in the
EmulationNodeNetworkBackend. This is done for the management interface. The configurator
for the Bridged LAN network backend requires the knowledge of the current connections. It
then iterates over the connections and puts the interfaces of the connection into a separate
subnet. Moreover, the IP addresses of connected nodes are remember to provide the con-
nectivity checking mechanism. This can be achieved easier from a central place instead of
implementing this inside a EmulationNodeNetworkBackend. The connectivity checker function
is a bash function which can be supplied via the Scenario Config, but is limited to the usage
of IP, since IP addresses are used to identify the peers. The described network configurator
is implemented by the NetworkConfiguratorP2P. It takes into account the nature of Bridged
LAN network backend where a NIC is used to represent a connection between nodes.
In contrast to the aforementioned configurator, the NetworkConfiguratorSameSubnet provides
each NIC with an IP address from the same subnet12. Note that a different subnet is pro-
vided for each interface. The same applies if there are two interfaces of the same kind. The
Bridged LAN network backend would not work with the NetworkConfiguratorSameSubnet,
since all NICs would be on the same subnet and hence the kernel would route packets only
through one interface.
The connectivity checking is performed in parallel by default and fails if a predefined
timeout is not enough. The standard connectivity checker is the ping command. Links
are assumed to be bidirectional. Therefore, connections are only pinged from one side of a
connection. This holds also if two nodes are distributed among different servers. It reduces
the required check commands by half.

11https://github.com/pexpect/pexpect/issues/47. Last viewed on 27.11.2016
12CIDR notation can be supplied via the Scenario Config.
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5.5 NetworkBackends

The implementation of the network backends is mainly discussed by showing the com-
mands required to start the nodes and set up the network. The commands are based on a
Chain 2 topology if not stated differently.
First the VDE network backend is introduced in Section 5.5.1 to the reader. Following is the
Bridged network backend in Section 5.5.2 which consists of the Bridged LAN and the Bridged
WiFi network backend. The implementation of the WiFi network backend is discussed in
Section 5.5.3.

5.5.1 VDE

The VDE network backend requires modifications to the Qemu class. QemuVDE handles
the creation of the NIC arguments for the VDESwitch. The VDE and Qemu commands are
shown in Listing 5.

1 vde_switch -sock "/tmp/MiniWorld/vde_switch_1_2_1" -M

/tmp/MiniWorld/vde_switch_mgmt_1_2_1 -hub↪→

2 vde_switch -sock "/tmp/MiniWorld/vde_switch_1_10_1" -M

/tmp/MiniWorld/vde_switch_mgmt_1_10_1 -hub↪→

3 qemu-system-x86_64 -enable-kvm -cpu host -m 1024M -serial

unix:/tmp/MiniWorld/qemu_1.sock,server -monitor

unix:/tmp/MiniWorld/qemu_monitor_1.sock,server -nographic

↪→

↪→

4 -device virtio-net-pci,netdev=net0,mac=02:01:00:00:00:01 -netdev

vde,id=net0,port=2,sock=/tmp/MiniWorld/vde_switch_1_2_1↪→

5 -device virtio-net-pci,netdev=net1,mac=0a:01:00:00:00:01 -netdev

vde,id=net1,port=2,sock=/tmp/MiniWorld/vde_switch_1_10_1↪→

6 -hda "openwrt-x86-miniworld_dev_v55_overlay_1.img"

Listing 5: Qemu And VDE Commands (Node 1 only)

For each interface a VDESwitch is started (lines 1-2). Qemu network backends consist
of two parts: One is responsible for providing the virtual NIC inside the guest, the other
part is the backend which interacts with the NIC13. The -dev command line switch defines
the virtual NIC (lines 4-6). Virtio-net-pci is a paravirtual driver which improves network
performance. The -netdev argument (lines 4-6) defines that the VDESwitch whose UDS
is located at /tmp/MiniWorld/vde switch 1 2 114 shall be used to connect the VM to the
network. There are two NICs in the command: The first is the actual interface, the second
the management interface. Both switches are connected to port 2.
Listing 6 shows the commands sent to the UDS of the appropriate VDESwitch to connect
node 1 and 2.

1 # set total number of ports

2 1>>> port/setnumports 65537

13http://wiki.qemu.org/Documentation/Networking. Last viewed on 27.11.2016.
14The prefix of the switches uses the following format:<node id> <interface type> <interface nr>.
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3 2>>> port/setnumports 65537

4

5 # enable colors

6 1>>> port/setcolourful 1

7 2>>> port/setcolourful 1

8 # set color for port 2

9 1>>> port/setcolour 2 2

10 2>>> port/setcolour 2 2

11

12 # get used ports

13 1>>> port/print

14 2>>> port/print

15

16 # connect nodes

17 (1, 2)>>> dpipe vde_plug -p 32 /tmp/MiniWorld/vde_switch_1_2_1 = wirefilter

-M /tmp/MiniWorld/wirefilter_1_2_1_2_2_1.sock -l 100 = vde_plug -p 14

/tmp/MiniWorld/vde_switch_2_2_1

↪→

↪→

18

19 # vlan

20 1>>> vlan/create 2

21 2>>> vlan/create 2

22 1>>> port/setvlan 32 2

23 2>>> port/setvlan 14 2

24

25 # adjust link quality

26 1_2_1,2_2_1>>> loss 0

Listing 6: VDE Network Setup

First the number of ports are set (lines 1-3). Second, the color mode is activated and
the links are colored with the number of interface type15 (lines 5-10). A Wirefilter is used
to connect both nodes (line 17). The ports 32 and 14 are randomly chosen from the free
ports. Used ports are read from the output of the port/print command. The connection is
created with 100% loss. The loss 0 command finally enables both nodes to communicate (line
26). The output of some VDESwitch commands is illustrated in Listing 7. Each successful
command ends with 1000 Success and is used by the REPLable mechanism.

1 3>>> $ port/setvlan 5711 10

2 3>>> 1000 Success

3

4 vde$

5 3>>> $ port/showinfo

6 3>>> 0000 DATA END WITH ’.’

7 Numports=65537

8 HUB=true

15The color for the mesh interface is 2.
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9 COLOURFUL=true

10 counters=false

11 .

12 1000 Success

13

14 vde$

15

16 3>>> $port/print

17 3>>> 0000 DATA END WITH ’.’

18 Port 0002 untagged_vlan=0000 ACTIVE - Unnamed Allocatable

19 Current User: root Access Control: (User: NONE - Group: NONE)

20 colour: 10

21 -- endpoint ID 0003 module unix prog : QEMU user=root PID=52499

SSH=10.79.74.146↪→

22 .

23 1000 Success

24

25 vde$

Listing 7: VDE REPL Commands Output

The Shell Prompt is vde$ and used to wait until the output of a command is ready. The
output of port/showinfo gives the number of ports. The implementation of the virtual nodes
that power the Hub and Management are not further discussed.

5.5.2 Bridged

The bridged network backend offers two implementations: The first is the Bridged LAN
network backend, the second the Bridged WiFi network backend. Both implementations
share as many code as possible. The integration of both network backends within the
NetworkBackendBootStrapper is presented in Figure 5.4. On the top right side of the Figure
the connection, switch and tunnel types are shown. The bottom right side illustrates the
network backend and the IP provisioner. The top left corner points out the integration of
the used virtualization technology. Finally, the virtual nodes for the Hub and Management
interface are shown in the bottom left corner. The beige components use dynamic subclassing
which is explained later in this Chapter.
The components in the NetworkBackendBootstrapper are dynamically populated by the needs
of a network backend in the NetworkBackends class. This holds for all network backends. The
types are then used everywhere in the code to create the actual instances. Figure 5.5 outlines
the integration of both network backends in a single derivation hierarchy. The base class is
NetworkBackendDummy. It defines methods which need to be implemented by subclasses to
provide a custom NetworkConfigurator and the InterfaceFilter. The NetworkBackendNotifications
class defines the interface for the communication with the SimulationManager.
Remember that the Bridged LAN network backends requires the prior knowledge of the
number of connections and is therefore only usable in conjunction with the Core Mobility
Pattern. This is abstracted by the NetworkBackendStatic class which examines all CORE
topology files and calculates the maximum number of connections for each node. The
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Figure 5.4: NetworkBackendBootStrapper Bridged

NetworkBackendDynamic is an empty class at the time of writing.
There are three modes implemented for both networks which are introduces in Section 5.5.2.
These concrete implementations are depicted in beige color. Each mode requires either the
NetworkBackendBridgeMultiDevice or NetworkBackendBridgeSingleDevice as base class. Instead
of creating 2 ∗ 3 classes, dynamic subclassing is used. For that purpose, each class is defined
and created from within a method and therefore does not live in the global namespace.
The base class is dynamically determined depending on the settings of the Scenario Config.
Dynamic subclassing is depicted with dashed lines in Figure 5.5.
NetworkBackend is the first class which derives dynamically from either NetworkBackendStatic
or NetworkBackendDynamic. NetworkBackendBridgedDummy then uses the NetworkBackend
method to get the appropriate base class dynamically. The actual implementations of
the network backends are NetworkBackendBridgedMultiDevice (Bridged Lan) and Network-
BackendBridgedSingleDevice (Bridged WiFi). The names single and multi express that either
connections are multiplexed by a single NIC or one Network Interface Card per connection
is required.
Not only the network backends use dynamic subclassing. The class diagram of switches and
connections is presented in Figure 5.6. The bridge is the same for both network backends.
Only the connection management differs

In the following, first the execution modes are illustrated. Then implementation details of
both network backends are discussed.

Execution Modes

There are different possibilities by which the virtual network can be created and controlled.
Brctl is a Linux command which handles bridge operations. Pyroute2 is a python library
which uses netlink sockets to interact directly with the kernel. There are two different ways
of using the library. One is to use the IPRoute object which fetches information from the
kernel for every call. There is also a batch mode such that commands can be grouped into
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Figure 5.5: Bridged Network Backend Class Diagram

one call. Another approach is to use the transactional IPDB object which keeps in sync with
the kernel by listening to netlink broadcast messages. Iproute is the successor of tools such
as ifconfig and brctl.
Brctl in contrast to Iproute2 worked out of the box on all tested machines. Even though it
does not offer a batch mode like Iproute2 does, it is included for situations where ease of use
is more important than performance.
Table 5.1 outlines for each operation the equivalent commands for each virtual network
setup. Rows 1 and 2 are commands for the Linux shell whereas the 3. and 4. rows depict
python code. Variables are shown as <variable>. The python method get iface idx() is equal
to a call to pyroute2.IPRoute().link lookup(ifname=<interface>)[0]. Since this requires
communication with the kernel for every call, an interface cache is fetched once from
the kernel after all bridges have been created. The cache is required to get the index
of an interface. Note that calls are not made directly to pyroute2.IPRoute, instead the
pyroute2.IPBatch object is used to provide a batch mode which is turned on by default.
The commands are used for creating a bridge, adding an interface to a bridge, changing
the state of an interface and for transforming a bridge into a hub (essential for the Hub
interface). Creating a tunnel and deleting interfaces is solely done with iproute2.
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The connection switching commands also differ in way the are executed. Brctl commands
are executed sequentially. Communication with the kernel produces overhead for each
command. Iproute2 is able to execute all commands at once (batch mode). Pyroute2 commands
are executed within a commit, thus allowing rollbacks if an error occurs. The performance
of these commands for connection switching is evaluated in Section 6.4.4.

Execution Options

Listing 8 depicts the commands used to setup a Chain 2 topology including link quality
impairment. The semantics of the tc and ebtables commands can be ignored, since they are
introduced later. The only thing that is important is that the commands in one section are
independent of each other. Therefore, they can be executed in an arbitrary order.
The commands are taken from the /tmp/MiniWorld/logs/network backend shell commands.txt
file. The Listing points out how commands are grouped into parallelizable events.

1 #Parallelizable commands for: ebtables, ebtables_create_chain:

2 ebtables --concurrent -N wifi1 -P DROP

3

4 #Parallelizable commands for: ebtables, ebtables_redirect:

5 ebtables --concurrent -A FORWARD --logical-in wifi1 -j wifi1

6

7 #Parallelizable commands for: ebtables, ebtables_commands:
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Semantics Command (iproute2 / brctl / pyroute2 IPRoute / pyroute2 IPDB)

ip link add name <bridge> type bridge

brctl addbr <bridge>

pyroute2.IPRoute().link(”add”, kind=”bridge”, ifname=<bridge>)
Create Bridge Device

pyroute2.IPDB().create(kind=’bridge’, ifname=<bridge>)

ip link set dev <bridge> type bridge ageing time 0

brctl setageing <bridge> 0

pyroute2.IPRoute().link(”set”, index=get iface idx(<bridge>), ageing time=0)
Set Hub Mode

<bridge obj>.set br ageing time(0)

ip link set dev <interface> master <bridge>

brctl addif <bridge><interface>

pyroute2.IPRoute().link(’set’, index=get iface idx(<interface>),

master=get iface idx(<bridge>))
Enslave NIC

<bridge obj>.add port(<bridge obj>[’index’])

ip link set dev <interface> (up,down)

-

pyroute2.IPRoute().link(’set’, index=get iface idx(<interface>), state=<state>)
Change NIC State

<tap obj>.up(), <tap obj>.down()

ip link add <tunnel name>type gretap remote <remote ip>key <key>
GreTap Tunnel

nopmtudisc

Delete Interface ip link del <interface>

Table 5.1: Connection Switching Commands

8 ebtables --concurrent -I wifi1 -i tap_00001_1 -o tap_00002_1 -j mark

--set-mark 1 --mark-target ACCEPT↪→

9 ebtables --concurrent -I wifi1 -i tap_00002_1 -o tap_00001_1 -j mark

--set-mark 1 --mark-target ACCEPT↪→

10

11 #Parallelizable commands for: connection, link_shape_add_child:

12 tc qdisc replace dev tap_00001_1 root handle 1:0 htb

13 tc qdisc replace dev tap_00002_1 root handle 1:0 htb

14

15 #Parallelizable commands for: connection, link_shape_add_class:

16 tc class replace dev tap_00001_1 parent 1:0 classid 1:1 htb rate

11485.8795215kbit↪→

17 tc qdisc replace dev tap_00001_1 parent 1:1 handle 10: netem delay 7.40ms

0.74ms 25%↪→

18 tc class replace dev tap_00002_1 parent 1:0 classid 1:1 htb rate

11485.8795215kbit↪→

19 tc qdisc replace dev tap_00002_1 parent 1:1 handle 10: netem delay 7.40ms

0.74ms 25%↪→

20

21 #Parallelizable commands for: connection, link_shape_add_filter:

22 tc filter replace dev tap_00001_1 parent 1:0 protocol all handle 1 fw

flowid 1:1↪→

73



5 Implementation

23 tc filter replace dev tap_00002_1 parent 1:0 protocol all handle 1 fw

flowid 1:1↪→

24

25 #Parallelizable commands for: bridge, bridge_add:

26 ip link add name wifi1 type bridge

27

28 #Parallelizable commands for: bridge, bridge_parallel:

29 ip link set dev wifi1 group 2

30 ip link set dev wifi1 type bridge ageing_time 0

31 ip link set dev tap_00001_1 master wifi1

32 ip link set dev tap_00001_1 up

33 ip link set dev wifi1 up

34 ip link set dev tap_00002_1 master wifi1

35 ip link set dev tap_00002_1 up

Listing 8: ShellCommandSerializer Chain 2

There are several options how the commands can be executed. The first is sequential.
This includes no Execution Option at all.
The Parallel option executes all commands from an event in parallel. Instead of letting
each worker execute one command, they can be grouped to one. For that purpose they
are chained together with sh -c ”cmd1; cmd2” such that the whole command fails if one
of it subcommands fails too. The option has been introduced since the python subprocess
module slows down operations while performing many shell calls. The option is called
Single Shell Call. Some commands support a Batch mode. Examples are ip and tc from
the iproute2 package. The batch version of the commands are illustrated in Listing 9 and 10
respectively.

1 ip -d -batch - <<<"cmd1\ncmd2\n...cmd3"

Listing 9: Ip Batch Mode

1 tc -d -batch - <<<"cmd1\ncmd2\n...cmd3"

Listing 10: Tc Batch Mode

The Execution Options can also be combined. The Batch mode is prioritized over the
One Shell Call mode which is prioritized over Parallel execution since it removes parallel
execution.
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Command Serialization

The Bridged network backends are the only ones which require shell commands for their
network setup and link impairment. Hence it is introduced in the following before the
implementation of both Bridged network backends is introduced to the reader.
The integration of the NetworkBackend by means of callback methods provided by the
SimulationManager requires NetworkBackends to react to each event. Shell commands to
create switches, connections and tunnels could be directly executed from the appropriate
callback method. Another possibility is to delay the command execution and to remember
only the commands that need to be executed. Although, this requires prior knowledge of
dependencies to order the commands such that they can be executed in the correct order.
Such a dependency is for example that a bridge needs to exist before any operations on it
can be performed.
The Command Serialization feature enables commands to be executed in an order which
is independent of the insertion order. Commands are serialized such that commands can
be executed in parallel. Moreover, the number of commands is reduced by filtering out
duplicates. Incorporating dependencies allows commands to be executed in parallel. For
that, commands are required to be grouped such that dependencies are resolved. There are
a few terms that need to be introduced to the reader. First, there is the concept of an Event.
It is used to group similar commands. Multiple events make up a Group. The order of the
events inside the group is called Event Order.

1 >>> scs=ShellCommandSerializer()

2

3 >>> scs.set_event_order("bridge", ["bridge_add", "bridge_add_if"])

4 # ^

5 # event_order

6 >>> scs.set_event_order("connection", ["state_change"])

7 >>> scs.set_group_order(["bridge", "connection"])

8 >>> # naming:

9 >>> # ^ ^

10 >>> # group event

11 >>> scs.add_command("bridge", "bridge_add_if", _, "brctl addif br_foobar

eth0", _)↪→

12 >>> scs.add_command("bridge", "bridge_add_if", _, "brctl addif br_foobar

eth1", _)↪→

13 >>> scs.add_command("bridge", "bridge_add", _, "brctl addbr br_foobar"

, _)↪→

14

15 >>> scs.add_command("connection", "state_change", _, "ifconfig eth0 up", _)

16

17 >>> print scs.get_all_commands()

18 [’brctl addbr br_foobar’, ’brctl addif br_foobar eth0’, ’brctl addif

br_foobar eth1’, ’ifconfig eth0 up’]↪→

19 # run commands with one threaded per virtual core

20 >>> scs.run_commands(self, max_workers=None)
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Listing 11: ShellCommandSerializer Example

Listing 11 shows the usage of the object. There are two groups: bridge and connection
(lines 3,6). There are two events for the bridge and one for the connection group. Note that
the >>> notation used inside the Listing depicts the python doctest format 16 and is not
the prefix of a node id. The Group Order is set in line 7. Afterwards commands are added to
the events in their respective group (lines 11-13,15). Note that arguments used for logging
are depicted with a symbol for clarity. The output in line 17 points out the dependencies
between the commands: First the bridge is created. Then the commands from the event
bridge add if and finally the command from the state change event of the connection group
is printed. The ShellCommandSerializer object is used especially by the network backends
to improve performance. Commands from one event are considered to be independent of
each other and can be executed in parallel by multiple threads or sequentially (line 20).
Even in the sequential mode, it has the advantage of removing duplicate commands. Some
commands may support a batch mode which can be fed by the ShellCommandSerializer too.

Distributed Mode

Nodes are interconnected on the link layer with GRE by default. Both sides of a connection
have to establish a tunnel. The tunnel is added to a bridge on both nodes. According to [6],
problems arise for packets with a size greater than the Maximum Transmission Unit (MTU).
The MTU is assumed to be equal for all nodes on the same broadcast domain. By default,
Path MTU Discovery (PMTUD) is enabled for both gretap tunnels as well as for Linux
(systemwide setting). The consequence is that the Don’t Fragment (DF) bit is set in IP
packets. Peers on a path which have a lower MTU, report with Internet Control Message
Protocol (ICMP) to their previous hop their supported MTU size so that the MTU can be
adjusted along the path. But since bridging operates on the link layer and PMTUD is a
network layer mechanism, the bridge silently drops frames with a too large MTU. If a
gretap device is added to a bridge, the bridges MTU is lowered to that of the gretap device
(1459) [6], but the NICs inside the VMs still has a default MTU of 1500. The problem is also
known to CORE17.
MiniWorld solves the MTU problem by setting the correct MTU inside the VMs.
GRE tunnels are distinguished by IDs. Since the coordination of common IDs between two
connected nodes introduces additional overhead, a Pairing Function is used to uniquely
map 2 node IDs to one integer. The resulting ID is used as tunnel ID. The Szudzik 18 pairing
function requires for the pairing of two 16 bit integers 32 bit for the unique ID.
Virtual LAN (VLAN) and Virtual Extensible LAN (VXLAN) are also implemented but
showed problems with the Docker containers. Moreover, VLAN provides only 12 bit for
the tunnel ID which is only sufficient for a small scenario. VXLAN in contrast uses 24 bit
for the tunnel IDs.

Bridged LAN

Listing 12 shows the start command for Qemu issued by the Bridged LAN network backend.

16https://docs.python.org/2/library/doctest.html
17https://github.com/gregtampa/coreemu/issues/93. Retrieved on 07.12.2016.
18www.szudzik.com/ElegantPairing.pdf. Last viewed on 11.12.2016
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1 2>>> qemu-system-x86_64 -enable-kvm -cpu host -m 1024M -serial

unix:/tmp/MiniWorld/qemu_2.sock,server -monitor

unix:/tmp/MiniWorld/qemu_monitor_2.sock,server -nographic

↪→

↪→

2 -device virtio-net-pci,netdev=net0,mac=02:01:00:00:00:02 -netdev

tap,id=net0,ifname=tap_00002_1,script=no,downscript=no↪→

3 -device virtio-net-pci,netdev=net1,mac=02:02:00:00:00:02 -netdev

tap,id=net1,ifname=tap_00002_2,script=no,downscript=no↪→

4 -device virtio-net-pci,netdev=net2,mac=0a:01:00:00:00:02 -netdev

tap,id=net2,ifname=tap_00002_3,script=no,downscript=no↪→

5 -hda "/tmp/MiniWorld/openwrt-x86-miniworld_dev_v55_overlay_2.img"

Listing 12: QemuTap Start (Node 2)

The Qemu network backend is tap (lines 2-4) and is set with the -netdev command line
switch. The tap device names are also declared in the command. A subclass of EmulatinoN-
odeNetworkBackend creates the MiniWorld interfaces depending on the maximum number of
connections a node has during the scenario. The creation of the command line argument for
the network interfaces of Qemu is handled by the QemuTap class (subclass of Virtualization-
Layer in Figure 5.4).
The network backend requires the NetworkConfiguratorP2P to configure point-to-point links
and overwrites the configurator defined in the Scenario Config. Moreover, the InterfaceFilter
AllInterfaces allows each interface to be connect with any other. The final decision which
interface is used for a connection is up to the Bridged LAN network backend.
In a Chain 3 Topology, node 2 has a connection to both neighbours. Therefore it has 2 NICs
plus one for the management network. The iproute2 commands in batch mode to create
the network topology are depicted in Listing 13. Note that the command is the iproute2
batch mode which reduces connection switching times. The commands used to set up the
network topology are written to /tmp/MiniWorld/logs/network backend shell commands.txt and
sorted by group and event through the ShellCommandSerializer.

1 ip -d -batch - <<<"link set dev tap_00001_1 up

2 link set dev tap_00002_1 up

3 link set dev tap_00002_2 up

4 link set dev tap_00003_1 up

5 link add name br_00001_00002 type bridge

6 link add name br_00002_00003 type bridge

7 link set dev br_00001_00002 group 2

8 link set dev br_00001_00002 type bridge ageing_time 0

9 link set dev tap_00001_1 master br_00001_00002

10 link set dev br_00001_00002 up

11 link set dev tap_00002_1 master br_00001_00002

12 link set dev br_00002_00003 group 2

13 link set dev br_00002_00003 type bridge ageing_time 0

14 link set dev tap_00002_2 master br_00002_00003

15 link set dev br_00002_00003 up

16 link set dev tap_00003_1 master br_00002_00003"
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Listing 13: Bridged LAN Network Backend Chain 3 Setup

Note that the link quality impairment is introduced in Section 5.5.2 first.

Bridged WiFi

The Bridged WiFi network backend allows any number of connections to be multiplexed over
a single NIC. In contrast to the Bridged LAN network backend only one NIC per MiniWorld
interface is used to build the Qemu command.
The InterfaceFilter is EqualInterfaceNumbers which allows only equal interfaces to be con-
nected. This prevents the Bridged WiFi backend from being called for other device combina-
tions of two nodes by the SimulationManager. The used configurator is NetworkConfigurator-
SameSubnet.
The commands to set up the Chain 3 topology are illustrated in Listing 14.

1 ebtables="ebtables --concurrent --atomic-file

/tmp/MiniWorld/ebtables_atommic"↪→

2

3 # clear tables

4 $ebtables --atomic-init

5 $ebtables --atomic-commit

6

7 # create chains

8 $ebtables --atomic-save

9 $ebtables -N wifi1 -P DROP

10 $ebtables -A FORWARD --logical-in wifi1 -j wifi1

11 $ebtables --atomic-commit

12

13 # layer2 firewall

14 $ebtables -atomic-save

15 $ebtables -I wifi1 -i tap_00001_1 -o tap_00002_1 -j mark --set-mark 1

--mark-target ACCEPT↪→

16 $ebtables -I wifi1 -i tap_00002_1 -o tap_00001_1 -j mark --set-mark 1

--mark-target ACCEPT↪→

17 $ebtables -I wifi1 -i tap_00002_1 -o tap_00003_1 -j mark --set-mark 2

--mark-target ACCEPT↪→

18 $ebtables -I wifi1 -i tap_00003_1 -o tap_00002_1 -j mark --set-mark 2

--mark-target ACCEPT↪→

19 $ebtables --atomic-commit

20

21 # change network topology

22 ip -d -batch - <<<"link add name wifi1 type bridge

23 link set dev wifi1 group 2

24 link set dev wifi1 type bridge ageing_time 0

25 link set dev tap_00001_1 master wifi1

78



5.5 NetworkBackends

26 link set dev tap_00001_1 up

27 link set dev wifi1 up

28 link set dev tap_00002_1 master wifi1

29 link set dev tap_00002_1 up

30 link set dev tap_00003_1 master wifi1

31 link set dev tap_00003_1 up"

Listing 14: Bridged WiFi Network Backend Chain 3 Setup

For illustration purposes, portions of the ebtables command are abstracted by the ebtables
shell variable.
Ebtables is used in the concurrent mode so that multiple commands can be executed in
parallel. Moreover, the batch mode is leveraged. The CLI switch –atomic-save copies the
current ebtable rules from the kernel into the file provided by –atomic-file. This enables
MiniWorld to switch only differences between network topologies. The –atomic-commit
copies the rules from the atomic file to the kernel.
For each interface in MiniWorld one bridge is created (line 22). Furthermore, the Network-
BackendBridgedSingleDevice creates for each bridge a new chain (line 9). The default policy
is to discard bridging of frames. Moreover, frames received by a bridge are redirected to
the appropriate chain. The ConnectionEbtables is responsible of controlling which interface
is allowed to communicate with another. For that purpose it inserts ebtable rules based on
the name of the tap interfaces. For example tap 00001 1 is allowed to communicate with
tap 00002 2 and vice versa (lines 15-16). The –mark-target ACCEPT means that frames shall
be bridged. Moreover, the connections are marked internally in the Linux kernel so that for
each connection different link qualities can be applied.
The functioning of ebtables and tc has already been illustrated in Section 2.4. In addition
the Figure from the aforementioned Section, Figure 5.7 highlights the places where the
ebtables firewall and connection marking is used. Based on this connection marking in the
FORWARD chain of the filter table, the link quality is applied by a tc QDisc (bottom right
corner).

Link Quality Models

In the following, the link quality impairment is illustrated for both network backends. First
the more complex Bridged WiFi network backend impairment is shown.
Figure 5.8 provides a graphical overview of the tc commands and the hierarchy which
is setup by them. The Figure outlines the tc commands for node 2 on the right side. The
Handles are illustrated in the middle of the Figure. The Root QDisc is HTB. It is a classfull
QDisc used to shape the bandwidth. It is a very easy to use QDisc, since only the bandwidth
has to be supplied. Most other QDiscs require more parameters and are more complex to
setup. Node 2 has two connections: One to node 1 and one to node 3. Therefore, 2 classes
are required to offer a different link impairment for the connections. The commands on the
ride side of Figure 5.8 belong to the connection between node 2 and node 3. For both nodes
a class is created with a different bandwidth. More advanced link emulation is offered by
netem which allows to simulate delay, packet reordering, loss and much more. Currently,
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only the delay is deployed in the netem capable link quality models19. Netem is classless,
therefore the classful HTB has to be created first to create the hierarchy. The netem command
introduces a delay of 16 ms ± 1,6ms where the delay depends to 25% on the last one.
Traffic is classified by a filter and redirected to the appropriate class. Since the example is
for the connection between node 1 and node 2, the traffic on interface tap 00002 1, where
the connection is marked by ebtables with 2 (the number of connection), is redirected to class
1:2.

1 # ebtables connection marking

2 ebtables --concurrent -I wifi1 -i tap_00001_1 -o tap_00002_1 -j mark

--set-mark 1 --mark-target ACCEPT↪→

3 ebtables --concurrent -I wifi1 -i tap_00002_1 -o tap_00001_1 -j mark

--set-mark 1 --mark-target ACCEPT↪→

4

5 # tc setup

6 tc -batch - <<<"

7 # htb root qdisc

8 qdisc replace dev tap_00001_1 root handle 1:0 htb

9 qdisc replace dev tap_00002_1 root handle 1:0 htb

10 qdisc replace dev tap_00003_1 root handle 1:0 htb

11

12 # set htb class

13 class replace dev tap_00001_1 parent 1:0 classid 1:1 htb rate 13500.0kbit

14 qdisc replace dev tap_00001_1 parent 1:1 handle 10: netem delay 4.00ms

0.40ms 25%↪→

19These are LinkQualityModelWiFiLinear and LinkQualityModelWiFiExponential.
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1:root qdisc (htb)

1:2htb class

10:netem qdisc

1:1

20:

tc qdisc replace dev tap_00002_1
    root handle 1:0 htb

tc class replace dev tap_00002_1
    parent 1:0 classid 1:2
    htb rate 3375.0kbit

tc qdisc replace dev tap_00002_1
    parent 1:2 handle 20:
    netem delay 16.00ms 1.60ms 25%

tc filter 
    replace dev tap_00002_1
    parent 1:0 protocol all
    handle 2 fw flowid 1:2

classification

flow 1 flow 2

…

Figure 5.8: Node 2 (2 Connections) TC Setup

15 class replace dev tap_00002_1 parent 1:0 classid 1:1 htb rate 13500.0kbit

16 qdisc replace dev tap_00002_1 parent 1:1 handle 10: netem delay 4.00ms

0.40ms 25%↪→

17 class replace dev tap_00002_1 parent 1:0 classid 1:2 htb rate 3375.0kbit

18 qdisc replace dev tap_00002_1 parent 1:2 handle 20: netem delay 16.00ms

1.60ms 25%↪→

19 class replace dev tap_00003_1 parent 1:0 classid 1:2 htb rate 3375.0kbit

20 qdisc replace dev tap_00003_1 parent 1:2 handle 20: netem delay 16.00ms

1.60ms 25%↪→

21

22 # apply link quality settings to wifi connection

23 filter replace dev tap_00001_1 parent 1:0 protocol all handle 1 fw flowid

1:1↪→

24 filter replace dev tap_00002_1 parent 1:0 protocol all handle 1 fw flowid

1:1↪→

25 filter replace dev tap_00002_1 parent 1:0 protocol all handle 2 fw flowid

1:2↪→

26 filter replace dev tap_00003_1 parent 1:0 protocol all handle 2 fw flowid

1:2"↪→

Listing 15: Linux Ebtables and TC Commands Link Quality Model WiFi
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All commands required to setup the link impairment in the Chain 3 scenario with the
LinkQualityModelWiFiExponential model are depicted in Listing 15.
The setup for the Bridged LAN network backend is much easier, since interfaces represent
a connection. Therefore, no filters are required. Instead, the QDiscs can be directly attached
to the interfaces.
Listing 16 outlines the required commands.

1 tc -batch - <<<"qdisc replace

2 dev tap_00001_1 root handle 1:0 htb default 1

3 qdisc replace dev tap_00002_1 root handle 1:0 htb default 1

4 qdisc replace dev tap_00002_2 root handle 1:0 htb default 1

5 qdisc replace dev tap_00003_1 root handle 1:0 htb default 1

6 class replace dev tap_00001_1 parent 1:0 classid 1:1 htb rate 13500.0kbit

7 class replace dev tap_00002_1 parent 1:0 classid 1:1 htb rate 13500.0kbit

8 class replace dev tap_00002_2 parent 1:0 classid 1:1 htb rate 3375.0kbit

9 class replace dev tap_00003_1 parent 1:0 classid 1:1 htb rate 3375.0kbit"

Listing 16: Ebtables and TC Commands: Link Quality Model WiFi

There is only one class for each interface. Therefore, packets are redirect to this class by
default (command line switch: default 1, lines 3-5). Note that all netem capable link quality
models can be used in combination with the Bridged LAN network backend.

5.5.3 WiFi

The WiFi network backend is a fork of wmediumd20. It registers with the mac80211 hwsim
driver via a netlink socket and provides callbacks to receive frames from it. It simulates
802.11 QoS and MAC layer effects. After the simulation, the frames are sent back via the
netlink socket to the driver. Since the bandwidth was not very high (around 2 Mbit/s), the
wireless medium simulation has been removed. Further modifications were required to
enable VMs to communicate with each other. Moreover, profiling has been done to improve
performance.
Figure 5.9 outlines the control flow within the user-space application. There are two call-
backs methods: process messages cb receives frames from the mac80211 hwsim driver and
nl error cb is called for errors. The frames are then converted to a custom format and passed
sequentially to two methods: deliver frame sends the frame back to the kernel and notifies
about the transmit status while of locally originated frames send frame sends the frame via
multicast to all nodes which subscribed to the multicast group.
These frames (expect locally originated ones) are then received by other nodes via the
process incoming frames method which lives inside a thread. Received frames are passed to
deliver frame which sends the frames to the kernel.

Listing 17 shows the data structure used for sending 802.11 frames accross the network.

20https://github.com/bcopeland/wmediumd
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1 struct frame {

2 uint16_t frame_len;

3

4 // hwsim module related

5 u64 cookie;

6 uint32_t flags;

7 uint32_t signal;

8 uint32_t tx_rates_count;

9 struct hwsim_tx_rate tx_rates[IEEE80211_TX_MAX_RATES];

10

11 uint8_t sender;

12 uint32_t data_len;

13 // actual frame

14 u8 data[0];

15 };
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Listing 17: Frame Format

The attributes are mostly related to mac80211 hwsim. The actual 802.11 frame is located
in the data field. A sender identifies a struct used internally for stations to represent MAC
addresses etc.
The callback method for frame reception from the kernel is illustrated in Listing 18.

1 static int process_messages_cb(struct nl_msg *msg) {

2

3 struct nlattr *attrs[HWSIM_ATTR_MAX+1];

4

5 /* netlink header */

6 struct nlmsghdr *nlh = nlmsg_hdr(msg);

7 /* generic netlink header*/

8 struct genlmsghdr *gnlh = nlmsg_data(nlh);

9

10 struct station *sender;

11 struct frame *frame;

12 struct ieee80211_hdr *hdr;

13 u8 *src;

14

15 // handle only command frames

16 if (gnlh->cmd == HWSIM_CMD_FRAME) {

17 // parse into attrs

18 genlmsg_parse(nlh, 0, attrs, HWSIM_ATTR_MAX, NULL);

19

20 if (attrs[HWSIM_ATTR_ADDR_TRANSMITTER]) {

21

22 u8 *hwaddr = (u8 *) nla_data(attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);

23 // get length

24 unsigned int data_len = nla_len(attrs[HWSIM_ATTR_FRAME]);

25

26 // allocate frame

27 frame = mymalloc_zero(sizeof(*frame) + data_len);

28

29 char *data = (char *) nla_data(attrs[HWSIM_ATTR_FRAME]);

30 memcpy(frame->data, data, data_len);

31 frame->data_len = data_len;

32

33 // ...

34

35 frame->sender = sender->index;

36 frame->frame_len = sizeof(struct frame) + frame->data_len;

37

38 process_frame(frame);
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39 }

40 }

41 }

Listing 18: Netlink Callback

It basically reads attributes from the netlink message and stores them in the custom
frame format struct frame. The frame is then passed to process frame (line 38) which handles
the frame as described previously. Note that the WiFi network backend only works with
machines having the same endianess since converting data to big endian reduces perfor-
mance and is unnecessary because at the time of writing it is not possible to start VMs with
different processor architectures.

5.6 Distributed

Distributed communication between a coordinator and clients is achieved with ZeroMQ. The
server implementation is depicted in Listing 19. Both patterns (Request-Reply vs. Publish-
Subscribe) use at least 2 sockets (lines 7-10, 12-16).

1 class ZeroMQServer(StartableObject):

2

3 def __init__(self):

4

5 self.context = zmq.Context.instance(CNT_ZMQ_THREADS)

6

7 # create the router socket

8 self.router_socket = self.context.socket(zmq.ROUTER)

9 addr = "tcp://*:{}".format(Protocol.PORT_DEFAULT_SERVICE)

10 self.router_socket.bind(addr)

11

12 # create reset socket

13 self.reset_socket = self.context.socket(zmq.PUB)

14 self.reset_socket.setsockopt(zmq.IDENTITY, bytes(random.randrange(1,

sys.maxint)))↪→

15 addr = "tcp://*:{}".format(Protocol.PORT_PUB_RESET_SERVICE)

16 self.reset_socket.bind(addr)

17

18 # protocol

19 self.protocol = Protocol.factory()()

20

21 # events

22 self.wait_for_scenario_config = threading.Event()

23 self.wait_for_nodes_started = threading.Event()

24

25 def _start(self, cnt_peers):

26 self.cnt_peers = cnt_peers
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27

28 self.handle_state_register()

29

30 # wait until the scenario config is set, because the tunnel

addresses↪→

31 # (received in the next step) are written to it

32 log.info("waiting until scenario config is set ...")

33 self.wait_for_scenario_config.wait()

34 self.handle_state_information_exchange()

35 self.handle_state_start_nodes()

Listing 19: ZeroMQ Server

A router socket is the asynchronous implementation of the Request-Reply pattern on
the server side (line 7-10). On the client side, a Request socket is created which allows
communication only in an alternating sequence of send and recv calls. A publish socket is
used by the coordinator to reset clients if an error occurred during simulation (lines 12-16,
Publish-Subscribe pattern). A protocol handles the serialization/deserialization of data (line
19).
The ZeroMQServer class is started in an own thread which is responsible to execute the start
method. An extra thread is necessary since the ZeroMQ sockets are used in blocking-mode.
The start method depicts the states of the DFA. Each state is handled by an own method.

5.6.1 State Register

Initially, clients need to register with the ZeroMQ router socket (line 28). The state is part of
every message between a client and its coordinator. The number of clients are defined in the
Global Config, hence the handle state register method blocks until all clients are registered. The
Scenario Config is required since tunnel addresses and the node placement on clients needs
to be communicated to all clients. Hence, line 33 blocks until a user has set the Scenario
Config. Clients get an ID assigned in the order they connected to the coordinator. The ID is
included by clients for requests in further states.

5.6.2 State Echange

In this state (line 34), the client informs the coordinator about the IP which shall be used
for tunnels and a score dictionary. The scoring is implemented by the class ServerScore.
The amount of free RAM is read with the help of the psutil library. The bogomips value is
read from /proc/cpuinfo. The score is used as input for the NodeDistributionStrategy for node
scheduling.

5.6.3 State Start Nodes

In this state all clients start the VMs and sync with the coordinator. After the nodes have
been started, the wait for nodes started event is set (declared in line 23).
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5.6.4 State Distance Matrix

The method handle state distance matrix is called by the SimulationManager first, if the event
has been set. Either the RunLoop thread performs steps in a predefined time unit, or the user
may step via the RPC interface. Both end up in a call to handle state distance matrix which
calls the method depicted in Listing 20.

1 class ZeroMQServerRouter(ZeroMQServer):

2

3 def _handle_state_distance_matrix(self, distance_matrix_per_server):

4

5 expect_distance_matrix =

self.get_expecter_state(States.STATE_DISTANCE_MATRIX, 1)↪→

6 # sync clients and send each his distance matrix

7 ResponderPerServerID(self.router_socket, self.protocol,

expect_distance_matrix, distance_matrix_per_server)()↪→

Listing 20: ZeroMQ Server Router Distance Matrix

The Listing outlines the implementation of the Request-Reply pattern for the distribution
of the distance matrix by the coordinator. Moreover, it shows the implementation of the DFA.
The variable distance matrix per server holds the distance matrix for each client ID. This may
be either the full distance matrix, or only the relevant part of the distance matrix for each
client. The communication of the coordinator with its clients is abstracted by two classes: The
Expecter class hides the asynchronous communication. For each client, a multipart message
with n arguments is expected. Each argument is deserialized separately. Moreover, the state
and the number of arguments of a client message is checked. The Expecter class which is
used for the Distance Matrix state is shown in line 5. Only the ID is required from clients in
this state.
A Responder class handles the replies to the clients. Either each clients gets the same reply
(ResponderArgument) or there is a different reply for each client (ResponderPerServerID). The
ResponderPerServerID is used in line 7 to send each client the appropriate distance matrix.
The implementation of the Publish-Subscribe distance matrix distribution is depicted in
Listing 21.

1 class ZeroMQCServerPubSub(ZeroMQServer):

2

3 def _handle_state_distance_matrix(self, distance_matrix):

4 self.sync_subscribers()

5 self.pub_socket.send( distance_matrix )

6

7 def sync_subscribers(self):

8 expect_distance_matrix =

self.get_expecter_state(States.STATE_DISTANCE_MATRIX, 1)↪→

9 ResponderArgument(self.router_socket, self.protocol,

expect_distance_matrix, b’’)()↪→
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Listing 21: ZeroMQ Server Publish Distance Matrix

In the Request-Reply implementation the clients have been synchronized via the router
socket, since a clients recv() call waits for a response of the coordinator. In the Publish-
Subscribe pattern in contrast, communication is unidirectional. Hence, the router socket is
used for synchronization (lines 7-9) while the distance matrix is sent via the Publish socket
(line 5).

5.6.5 Distance Matrix Mapping

The mapping of the distance matrix to clients is depicted in Listing 22.

1 def map_distance_matrix_to_servers(self, distance_matrix):

2 res = defaultdict(dict)

3

4 if not config.is_publish_individual_distance_matrices():

5 for server_id in scenario_config.get_distributed_server_ids():

6 res[server_id] = distance_matrix

7 return res

8 else:

9 # create a dict for each server

10 for server_id in scenario_config.get_distributed_server_ids():

11 res[server_id]

12

13 for (x, y), distance in distance_matrix.items():

14 res[self.get_server_for_node(x)][(x, y)] = distance

15 res[self.get_server_for_node(y)][(x, y)] = distance

16

17 return res

Listing 22: Distance Matrix To Node Mapping

The method config.is publish individual distance matrices() (line 4) reflects a config value in
the Global Config. If no individual distance matrices shall be created, for each server id the
distance matrix is stored (lines 4-5). In the other branch, the node placement matrix is used
to filter out the entries of the distance matrix for a client. All nodes which are hosted by a
client are relevant to it (lines 8-15). Which client is responsible for which node is determined
with the get server for node method (lines 14-15).

5.7 VM Preparation

The following illustrates how VM images can be created and deployed. Moreover, it points
out the required modifications of a VM such that it works with MiniWorld.
New images can be created with the commands shown in Listing 23.
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1 wget http://saimei.acc.umu.se/debian-cd/8.6.0/amd64/iso-cd/

debian-8.6.0-amd64-netinst.iso↪→

2 qemu-img create -f qcow2 debian_8.qcow2 5G

3 kvm -boot once=dc

4 -vga qxl -spice port=5900,addr=127.0.0.1,disable-ticketing

5 -redir :<host_port>::22

6 -cdrom debian-8.6.0-amd64-netinst.iso debian_8.qcow2

Listing 23: Image Deployment

First, an image has to be downloaded. Debian 8 (Jessie) is used in the example (line 1).
Then a QCOW2 image is created which serves as the hard disk for the VM. The VM is
booted from the live image (line 2). The user can then install the OS to the harddisk of the
VM. Note that starting KVM without the -vga switch does not work for images which have
a graphical installer. The UI can be accessed with spice compatible programs 21.
After installing the VM, it can be started without the live image by leaving out the –boot and
the -cdrom command line switches. The -redir CLI switch redirects the port 22 to localhost.
This enables accessing the VM via ssh if the network is configured by means of Dynamic
Host Configuration Protocol (DHCP) in the VM. Moreover, the VM can access the internet
for further deployment. Note that ICMP does not work with the user network backend
(SLIRP) of Qemu.
The modifications of the VM required by MiniWorld depend on the boot loader and the
init system. For systems with grub, the serial console can be enabled by modifying the
/etc/default/grub config file. Listing 24 enables the serial console and disables the new NIC
naming scheme for Ubuntu 16.04 systems.

1 GRUB_CMDLINE_LINUX="console=tty1 console=ttyS0 net.ifnames=0 biosdevname=0"

2 GRUB_TIMEOUT=0

3 GRUB_TERMINAL=console

Listing 24: Grub Modifications at /etc/default/grub

This allows the NetworkConfigurator to configure based on the ethX naming scheme. The
timeout is not required, but improves VM boot times.
The modification of grub22 redirects the kernel boot log to the serial console so that Mini-
World can detect when the boot process is over.
There is no autologin mechanism implemented. Therefore, the root user is expected to be
logged in on the serial console’s shell. The modification depends on the init system. Ubuntu
16.04 uses Systemd while older versions used the Upstart init system. The modifications for
both systems are depicted in Listing 25 and 26 respectively.
Another reduction of VM boot times can be achieved by disabling any DHCP configuration.

21Linux: apt-get install libvirt-bin. Mac: brew cask instal remoteviewer. Run remote-viewer spice://0.0.0.0:5900
22The command update-grub has to be run after the file is modified.
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1 mkdir /etc/systemd/system/serial-getty@.service.d

2 cat << EOF >

3 /etc/systemd/system/serial-getty@.service.d/override.conf

4 [Service]

5 ExecStart=

6 ExecStart=-/sbin/agetty --keep-baud 115200,38400,9600 -a root %I $TERM

7 EOF

Listing 25: Systemd Modifications

1 T0:23:respawn:/sbin/getty -L ttyS0 --autologin root 38400 vt100

Listing 26: Sysvinit Modifications

5.8 CLI

In the following, the CLI is presented. Initially, the event system is presented in Section 5.8.1
since it provides the the CLI with the current progress of operations. The CLI implemen-
tation and error checking is discussed in Section 5.8.2. Finally, an experiment is depicted
which shows the CLI API in the distributed mode (Section 5.8.3).

5.8.1 Event System

Monitoring the progress of operations in MiniWorld is achieved through a central system
called Event System. It defines several events on a per node basis. The complete progress for
an event is then the progress of all nodes for this particular event. Progress calculations may
not be so correct that they hit 100% at the end. Therefore, extra context managers help to
ensure that while leaving the current context, the progress of an event is updated to 100%.
Listing 27 outlines the usage of the Event System.

1 >>> es = EventSystem(["event_boot"])

2 >>> # instead of constructor: es.events.add(es.EVENT_VM_BOOT)

3 >>>

4 >>> with es.event_init("event_boot") as event_boot:

5 >>> for i in range(5):

6 >>> time.sleep(0.2)

7 >>> event_boot.update([1], 0.2 * i)

8 >>> event_boot.update([2], 0.1 * i)

9 >>> print "avg: %s" % dict(es.get_progress())

10 >>> print "per node: %s" % pformat(es)

11 # output for i==1
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12 avg: {’vm_boot’: 0.15000000000000002, ’total_progress’:

0.15000000000000002}↪→

13 per node: OrderedDict([(1, OrderedDict([(’vm_boot’, 0.2)])), (2,

OrderedDict([(’vm_boot’, 0.1)]))])↪→

14 >>> # progress is not 100% yet

15 >>> time.sleep(5)

16 >>> # but after the context manager exits

17 >>> print "finishing ..."

18 >>> print es.get_progress()

19 >>> pprint(es)

20 [(’total_progress’, 1.0), (’vm_boot’, 1.0)]

21 OrderedDict([(1, OrderedDict([(’vm_boot’, 1.0)])), (2,

OrderedDict([(’vm_boot’, 1.0)]))])↪→

Listing 27: Event System Demo

The system is initialized with one event (event boot (line 1)). Note that events can also be
added later. The context manager event init sets the progress to WiFi at the beginning of
the context/block. The event boot is an Event object which can be used to update or finish
the progress. The example updates the progress for two nodes independently. The progress
is 0.2 for node one and 0.1 for node for i=1 (line 13). The average progress is calculated
from both nodes (line 12). After the context is left, the progress is updated to 1.0 (shown
in lines 20-21). There are cases where the progress is not controlled from inside a loop. For
this case, it is possible to define for which node ids the progress has to be set to 1.0 after
leaving the context. The same applies for initializing the progress for an event with the
context manager. Moreover, the total progress may not be known in all cases. Therefore, it
is possible to add a float value instead of updating the complete progress.
Figure 5.10 depicts the currently deployed events and their order. First a VM is booted (1).
Afterwards the serial console’s shell is entered (2). Then the Pre Network Shell Commands are
executed (3). The Post Network Shell Commands (5) are first executed if the network backend
has been set up (4). Finally the network is setup in terms of IP provisioning (6) and the
connectivity is checked (7). For event number 6, the number of connections that have to be
established are calculated by the NetworkManager. Note that even though the event update
for a node is sequential in terms of events, it is not for the whole progress, since nodes are
started and managed in parallel. At the end of the next Section, a CLI view of the progress
is shown which is based on the EventSystem.

5.8.2 CLI & Error Checking

The CLI is built on top of the RPC interface. The usage of the RPC interface allows different
clients and technologies to control MiniWorld. A web UI might follow in future releases of
MiniWorld.
The CLI is provided by the mw.py script. It uses the argparse module to implement the CLI
and provides a subparser for each command. A parser can be associated with a function.
The function of the parsed command can then be accessed via the parsed arguments. This
function is linked internally to an ActionClass. By means of a decorator, the access to the
class is provided in the self argument to the function. Listing 28 outlines a method used

91



5 Implementation

EventSystem

Emulation-
Node

Qemu

Network-
Manager

1: vm_boot

2: vm_shell_ready

5: vm_shell_post_network_commands

3 : vm_shell_pre_network_commands

4: network_backend_setup

Network-
Configurator

6 : network_setup

7 : network_check

Legend

Per Node

Per Connection

Figure 5.10: Event System Interaction

for the ./mw.py step command. The variable args contains all parsed information from the
parser (argparse Namespace object).

1 @new_action_decorator

2 def action_step(self, args):

3 return self.connection.simulation_step(args.steps)

Listing 28: CLI Action Method

RPC connection establishment, error checking and RPC server switching in the dis-
tributed mode is abstracted by the ActionClass, which is depicted in Listing 28. The call
method establishes a connection to the RPC server (line 7).

1 class Action(object):

2

3 def __call__(self, args):

4

5 self.addr = RPCUtil.addr_from_ip(args.addr, RPCUtil.PORT_COORDINATOR)

6 log.info("connecting to rpc server ’%s’", self.addr)

7 self.connection = self.get_connection(self.addr)

8 if not args.no_check:

9 # check for errors first

10 self.connection.simulation_encountered_exception()

11

12 # switch to the rpc server which holds the node
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13 if hasattr(args, "node_id") and args.node_id is not None:

14 self.connection = self.get_connection_server(node_id=args.node_id)

15

16 def __new__(cls, *args, **kwargs):

17

18 cls._instance = super(Action, cls).__new__(cls)

19 return cls._instance(*args, **kwargs)

20

21 def get_connection_server(self, node_id=None, server_id=None):

22

23 if config.is_mode_distributed():

24

25 # ask local rpc for ip of the server which holds the node

26

27 if server_id is None and node_id is not None:

28 server_id = self.connection.get_server_for_node(node_id)

29 else:

30 server_id = server_id

31

32 print >> sys.stderr, "using server: %s" % server_id

33 addr =

self.connection.get_distributed_address_mapping()[str(server_id)]↪→

34 addr = RPCUtil.addr_from_ip(addr, RPCUtil.PORT_CLIENT)

35 log.info("switching to rpc server ’%s’", addr)

36 # drop local connection and use remote server

37 connection = self.get_connection(addr)

38

39 # check for errors first

40 connection.simulation_encountered_exception()

41

42 return connection

43

44 # use local connection

45 return self.connection

Listing 29: CLI Action Class

Errors in MiniWorld are stored at a central place. This is used by a custom Thread class,
to stop and store the exception at this place. Since there is no way to directly tell the client
that an error occurred (no standing connection), a client has to manually check for errors.
The call method performs error checking for all CLI methods, before the actual RPC
call is done (lines 8-10). Some actions are required23 to be redirected to a specific server in
the case of the distributed mode. The method get connection server handles this case. For
that purpose the RPC interface of the coordinator (line 33) is used to find out the server
which manages the specific node id (line 28). Afterwards, the address of the RPC server

23If node id is in the parser namespace object.
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is figured out and finally the connection is switched to the other RPC server (line 33, 37).
Error checking is also performed for the new RPC server (line 40).
The new action decorator shown in Listing 30 ties a method together with the ActionSubClass.

1 def new_action_decorator(fun):

2

3 class ActionSubClass(Action):

4

5 def __call__(self, args):

6 super(ActionSubClass, self).__call__(args)

7

8 # supply ActionSubClass to the method

9 return fun(self, args)

10

11 return ActionSubClass

Listing 30: CLI Action Decorator

It does so by providing a decorator for methods. This exchanges the actual method with
the ActionSubClass depicted in lines 3-11. It mimics a method call with the call method.
Methods require access to the connection object of the ActionClass, therefore self is supplied
to the function in line 9.
Furthermore, the CLI points out the usage of the EventSystem. The progress for each event is
summed up and serialized as a dictionary. This is done periodically to update the progress
on the CLI. For that purpose, the starting of a RPC scenario is set to be non-blocking so
that the RPC connection can be used to fetch the progress periodically. Listing 31 shows the
visualization of the progress on the Command Line Interface.

1 Scenario starting: |

2

3 Overall Progress : 59% |>>>>>>>> || <<<<<<<<|

4 vm_boot : 100% |||||||||||||||||||||||||||||||||

5 vm_shell_ready : 100% |||||||||||||||||||||||||||||||||

6 vm_shell_pre_network_comm: 96% |------------------------------ |

7 network_backend_setup : 0% | |

8 vm_shell_post_network_com: 0% | |

9 network_setup : 0% | |

10 network_check : 0% | |

Listing 31: CLI Progress View

5.8.3 MiniWorld API Demonstration
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1 #!/usr/bin/env bash

2

3 hosts=(root@androbox57 root@androbox58 root@androbox59 root@androbox60

root@androcloud root@rechenschieber root@nicerboxbig)↪→

4 port=2222

5

6 function clean_up {...}

7 trap clean_up EXIT

8

9 hosts_str=‘printf "%s:$port," "${hosts[@]}"‘

10 hosts_str=${hosts_str::-1}

11 experiment_dir=experiments/results/distributed_chain_256

12 peer_stats=$experiment_dir/peers.txt

13 cnt_nodes=256

14 rm $peer_stats

15 mkdir -p $experiment_dir

16

17 set -e

18

19 echo "starting cpu sensor on all machines"

20 fab cstart_cpu_sensor -P -H $hosts_str &

21 fab_pid=$$

22

23 echo "starting scenario ..."

24 ./mw.py start MiniWorld_Scenarios/experiments/distributed/

25 distributed_chain_256_serval.json

26

27 echo "setup network"

28 ./mw.py step

29

30 echo "starting serval on all nodes ..."

31 ./mw.py exec "servald start"

32

33 cnt_peers=0

34 until [ $cnt_peers -eq $cnt_nodes ]; do

35 cnt_peers=$(./mw.py exec --node-id 1 ’servald id peers’ 2>/dev/null |

echo $((‘wc -l‘-3)))↪→

36 time=$(date +%s)

37 echo "$time,$cnt_peers" | tee -a $experiment_dir/peers.txt

38 sleep 0.1

39 done

Listing 32: Use Case

The code depicted in Listing 32 shows a Chain 256 network topology used for testing the
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Serval Mesh Software24. It is used in Section 6.5.6 to provide performance measurements of
the distributed mode.
There is nothing special in the Scenario Config, therefore it is not shown. Bash has been
chosen as scripting language because of its easy shell command execution. Of course, the
MiniWorld CLI is accessible from every programming language. The experiment uses seven
computers in the distributed mode. There is a cpu sensor started with fabric25. Moreover,
the time which Serval requires to find all its neighbours is measured (lines 34-39).
In line 3 the participating hosts are declared for ssh automation via fabric. A cleanup method
for the fabric processes and fetching the logs via scp is depicted lines 6-7. The host command
line argument for fabric is build in lines 9-10 . The result directory and result file are defined
in lines 11-12.
The number of Serval peers, node one is required to see, is defined in line 13.
First, the cpu sensor is started with fabric on all computers (lines 19-21). Then the scenario
is started (lines 23-25). This starts the nodes in parallel on all computers.
Note that at this point, no network between the nodes is set up except the management
network. The scenario is started without a RunLoop, therefore the user has to manually step.
The first step (line 28) then sets up the network topology.
Afterwards servald is started on all nodes in the cluster. The CLI interface connects to the
RPC interface which distributes the requests sequentially to all computers in the cluster
via the RPC interface. Finally, the number of Serval peers are logged. For that purpose, the
command servald id peers is periodically executed on node one (line 35). The request is again
forwarded by the Coordinator to the appropriate computer which hosts the node/VM. The
experiment exits if node one is able to see all of its peers.
The clean up functions copies the logs via scp afterwards.

24www.servalproject.org
25Python SSH automation tool: http://www.fabfile.org
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6 Evaluation

This section presents the experimental evaluation of MiniWorld. First the test environment
is introduced in Section 6.1. Afterwards the start times of OpenWrt Barrier Braker and Debian
8 VMs are examined. For that purpose, the different Boot Modes are compared in terms of
start time and CPU overhead (Section 6.2). Following is the Snapshot Start mode which
reduces VMs start times heavily (6.2.2).
Afterwards the different Qemu NIC models are evaluated in terms of bandwidth (Section
6.3). Network throughput, delays and switching times of the different network backends
are examined in Section 6.4.
With the help of the WiFi network backend, a 802.11s network with 32 hops is build and
evaluated in Section 6.4.3.
Last but not least, the distributed mode of MiniWorld is evaluated. The communication
overhead is examined in Section 6.5.1. For further studies a new test system is introduced
in Section 6.5.2. Following is the study of boot times (Section 6.5.3) and network switching
times (Section 6.5.4). Moreover, the overhead of tunnels in terms of bandwidth and delay
is examined (Section 6.5.5). Finally a Chain 256 mesh network with Serval, running on 7
computers, in MiniWorld’s distributed mode is presented in Section 6.5.6.
All experiments have been conducted with the CORE Mobility Pattern. The main bottleneck
of experiments was neither Random Access Memory (RAM) nor network. Instead CPU
showed to be the limiting factor. Therefore, heatmaps are used to show the CPU usage
of the various experiments. Moreover, experiments are repeated 10 times to get statistical
sound results.

6.1 Test Environment

All experiments where run using Docker containers. This enables the easy deployment
of MiniWorld. Since iproute2 has to be build according to the kernel version, there is no
possibility to include the correct iproute2 version in the Docker image. Although, there is an
installation script which automates the iproute2 deployment. The experiments except for the
distributed mode, have been performed on a single computer. The technical details of it are
depicted in Table 6.1. It has 16 physical CPU cores and 64 virtual cores. 256GiB of memory
allow to run a lot of VMs concurrently. Throughout all experiments iproute2 version 4.2.0
(Git1) and Qemu version 2.6.0 (Git2) has been used.

Table 6.2 shows the VMs which are used in the experimental evaluation. OpenWrt Barrier
Braker has been compiled manually, hence only a minimum of kernel modules and software
packages are built-in. The Debian 8 image has been installed from a netinstall image where
only the options SSH Server and Standard system utilities have been chosen in the software

1https://kernel.googlesource.com/pub/scm/linux/kernel/git/shemminger/iproute2
2https://github.com/qemu/qemu
3https://github.com/svinota/pyroute2. Commit ID: commit 13f1adb1ab2d5ca8927f1eb618bbb9317-

0b61c33
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6 Evaluation

Resource Value

Host OS Ubuntu 14.04.4 LTS

Docker OS Ubuntu 14.04.4 LTS

Kernel 4.2.0-42-generic

RAM 32x DIMM DDR3 Synchronous 1600 MHz 8GiB

HDD 1862GiB, 15000rpm

CPU AMD Opteron(tm) Processor 6376 @2.3GHz, Turbo 3.2GHz

CPU Cores Physical/Virtual 16/64

Network NetXtreme II BCM5709 Gigabit Ethernet 1Gbit/s

Iproute2 Git release v4.2.0

Pyroute Git 3

Qemu Git release v2.6.0

Table 6.1: Technical Data Test System 1

Image Name Size (MiB)

OpenWrt Barrier Braker 68

Debian 8 1568

Table 6.2: Node Images

selection dialog.
While the custom built OpenWrt Barrier Braker image has only a size of 68 MiB, the Debian
8 VM is far bigger with a size of 1568 MiB. The images do not only differ in disk image
size, they also show different memory consumptions after boot: OpenWrt Barrier Braker only
needs 10MiB whereas Debian 8 VM requires 78MiB of RAM4.

6.2 QEMU

In this Section, the boot times of Qemu VMs are evaluated. The first experiment evaluates
the performance of the different Boot Modes. Figure 6.1 outlines the results of several VM
start modes. The number of nodes has been increased exponentially. The image used for
all nodes is OpenWrt Barrier Braker with 32 MiB of memory. Neither Pre Network Shell
Commands nor Post Network Shell Commands are used in the appropriate Scenario Configs. The
abbreviations presented in the Figure are as follows: Boot Prompt (BP), Shell Prompt (SP)
and Ram Disk (RD). The Ram Disk tries to leverage the huge amount of memory which
the test system offers. For that purpose a ramfs5 file system is mounted on /tmp/MiniWorld
where all MiniWorld files are located. In contrast to the tmpfs file system, ramfs prevents
swapping. If swapping occurs, the number of VMs should be reduced. Since MiniWorld
runs inside a container, memory limits can prevent the container from freezing the host.
The number of nodes have been doubled until a total number of 512 VMs has been reached.
The actual limit of the test system for starting VMs is between 512 and 1024. Starting 1024
VMs was no problem, but creating snapshots for all of them in memory (due to the ram

4Started with -m 2048M and executed command cat /proc/meminfo.
5https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt. Last

viewed on 01.12.2016
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Figure 6.1: Boot Mode Times OpenWrt Barrier Braker, 32MiB RAM

disk) was.
The VMs were started concurrently. The test machine offers 64 virtual cores, thus there are
nearly no performance differences between starting 1 or 64 nodes. Doubling the number of
nodes to 64 however results in approximately doubling the time required to start all VMs.
Figure 6.1 points out a problem for the Pexpect Boot Mode. Since it uses select system call to
check for I/O, the number of file handles was too high for pexpect, hence starting 32 VMs
was not possible for some runs. The Ram Disk feature shows only an improvement of 1-2
seconds. The reason for this might be that each node uses the same backing image, thus it is
already cached. During boot probably not very much disk write operations are performed.
Further studies are required to evaluate if the Ram Disk feature improves performance in a
more advanced emulation where nodes are not only booted but some software is running
over a long time. Write operations are all done to memory, since the write layers are located
in the Ram Disk too.
The experiment shows that MiniWorld does not introduce a bottleneck while starting and
configuring nodes, at least for the tested number of VMs. The Selectors SP mode is always
faster than Selectors BP. The explanation for this is that the Shell Prompt appears before the
Boot Prompt, at least for the tested OpenWrt version. Moreover, simulating pressing enter is
necessary for the Shell Prompt since it does not appear otherwise. The Boot Prompt procd: -
init complete - has not been inserted manually. It is part of the OpenWrt Barrier Breaker boot
process output. However, more recent versions seem to miss it.
The posed CPU resources of the two Selectors boot modes are depicted in Figure 6.2. At
the colorbar on the ride sight of each diagram, one can see that the maximium CPU value
is higher for the Selector Boot Prompt mode. The reason for this is the difference in the
implementation. The Selector Boot Prompt reads the whole boot output and tries to match
the Boot Prompt as regular expression against it for each new outcome of the UDS. This is
necessary since the Boot Prompt may be split up between two socket read() calls. Contrary
to this, the Selector Boot Prompt tries to enter the shell in predefined time intervals and gets
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Figure 6.2: Boot Modes CPU, OpenWrt Barrier Braker, 32MiB RAM

the Shell Prompt for every simulated enter if the VM is ready. Therefore, no output has to be
stored.
Using the Shell Prompt to detect when a VM is started is easier but the VM may not be
ready yet. For example an interface may not be ready and commands to configure the
NIC by MiniWorld may fail. Therefore, one has to evaluate for each image if the Selectors
Shell Prompt mode leads to problems. The Selectors Boot Prompt mode is preferable but may
require to insert a Boot Prompt into the boot process of the VM. Note that the Shell Prompt is
mandatory since it is needed for the REPLable mechanism.

6.2.1 Image Comparison

Another experiments aims at pointing out the differences between the node images. Both
have been started with the Selectors Shell Prompt boot mode and no shell commands are
sent to the VMs serial console. The Debian 8 VM required 256MiB of RAM instead of 32MiB
(OpenWrt). Figure 6.3 shows the required boot time for each image. Moreover, it points out
that OpenWrt is approximately twice as fast as Debian. Since the Shell Prompt boot mode
has been used, the VMs may not be fully booted, but offered a shell prompt. Moreover,
doubling the number of nodes by factor 64 (number of virtual CPU cores) doubles the start
times for each image. Therefore, MiniWorld scales linear. The CPU overhead introduced
by each image is illustrated in the heatmaps in Figure 6.4. It points out that Debian 8 poses
higher requirements on the CPU.
The Ram Disk feature showed again small improvement in boot times.
The selection of the best fitting image depends on the requirements a user has: OpenWrt
is very fast but is harder to configure, especially if a custom image needs to be built from
scratch. Debian on the other side is easy to install and deploy but reduces performance as
the experiment pointed out.
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Figure 6.3: OpenWrt vs. Debian 8 Boot Times. OpenWrt RAM: 32MiB. Debian RAM: 256MiB. Boot Mode:
Selectors Shell Prompt
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Figure 6.4: Boot Times CPU Usage (+RD): OpenWrt Barrier Braker vs. Debian 8

6.2.2 Snapshot Boot

The experiments in the last Section showed the overhead which is introduced by full system
virtualization. Since experiments have to be run multiple times with the same configuration
to get statistically sound results, VM snapshots can be used to improve VM boot times
drastically. Snapshots are taken after the VM has been started the first time. The Pre Network
Shell Commands are incorporated into the snapshot, the Post Network Shell Commands are not.
Figure 6.5 depicts the improvement of node start times achieved by the Snapshot Start.
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Figure 6.5: Boot Modes Debian
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Figure 6.6: Boot Modes Debian CPU

Even for 512 VMs, only a few seconds are required to restore the state of the VM (6.8s). A
full boot requires 143.3s, hence the node start times are reduced by factor 21. Additionally,
the CPU requirements are lower as outlined by Figure 6.6.

6.3 QEMU NIC Models Bandwidth

CPU is not the only critical resource while using MiniWorld. The network bandwidth of the
Qemu NIC Models varies. The following study tries to figure out which Qemu NIC Models
offers the best network bandwidth. The supported Qemu NIC Models can be displayed with

102



6.4 Network Backends

vm
xnet3

virt
io-n

et-
pci

rtl8
139

pcnet

ne2k_p
ci

ne2k_i
sa
i82801

i82562

i82559er

i82559c

i82559b

i82559a

i82558b

i82558a

i82557c

i82557b

i82557a
i82551

i82550

e1000-82545em

e1000-82544gc
e1000

Qemu NIC Models

0

1

10

100

1000

10000

M
bp

s

Figure 6.7: Qemu NIC Models Bandwidth

the command shown in Listing 33.

1 kvm -device \? 2>&1 | awk ’/Network devices/,/Input devices/’ | grep name |

awk ’{print $2}’ | tr -d ’",’↪→

Listing 33: Get Qemu NIC Models

For each model, two VMs have been started. The model can be supplied to the Scenario
Config with the key qemu→nic→model. The iperf command is started on node 1 via the Pre
Network Shell Commands. From node 2, the command iperf -f mbits -t 60 -c 10.0.0.1 is executed
and displays the bandwidth tested with a Transmission Control Protocol (TCP) test in 60s.
The network backends rocker, usb-bt-dongle, usb-net, virtio-net-device, virtio-bus may need
further setup or are not working at all. Starting with these models resulted in a error by
Qemu. Therefore, they are not part of the study.
Figure 6.7 depicts the bandwidth for each Qemu NIC Model. Some of the drivers seem to
be even not available or working with OpenWRT Barrier Braker. Errors during boot such
as SIOCSIFADDR: No such device and SIOCSIFFLAGS: Cannot allocate memory” result in 0
bandwidth in the Figure. The derivates of the e1000 driver show a good performance greater
than 1000 Mbps but the fastest driver is the paravirtualized virtio-net-pci driver. Therefore,
it should be the preferred Qemu NIC Model.

6.4 Network Backends

The 4 presented network backends are evaluated in terms of bandwidth and Round Trip
Times (RTTs) in the following. Afterwards, a showcase for the WiFi network backend is
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Figure 6.8: Network Backend Throughput

depicted.

6.4.1 Bandwidth

For the study of bandwidth, 2 VMs are used. On node 1 iperf is started in server mode. Node
2 connects via TCP and takes 60 seconds to determine the available bandwidht. All nodes
have been started with 1024MiB RAM and the virtio-net-pci Qemu NIC Model. Moreover,
each node is given only one CPU core.
The study is depicted in Figure 6.8. The VDE network backend provides only a bandwidth
of 55.7 Mbps on average. Both vde switch processes required 100% on a CPU core. Further
researched pointed out that the bandwidth correlates with the number of ports, at least
in the hub mode. No tests for the switch mode has been done. Booting two Qemu nodes
manually and interconnecting them with VDE with the default port size (32), resulted in a
total bandwidth of 439 Mbps. It is not sure whether this is intended behaviour since the
hub seems to flood traffic even for non active ports. Maybe this is the result of the color
patch. Further research is required to improve the integration of VDE into MiniWorld.
The WiFi network backend offers an average bandwidth of 165.1 Mbps. This is enough to
simulate 802.11/a/b/g but is not sufficient for 802.11n/ac networks. The limiting factor is
the CPU. Providing the VMs with more cores may increase bandwidth also. The multicast
transport mimics the wireless broadcast nature but also poses high CPU requirements
since every node receives the traffic. Since there is no link quality impairment yet, the
situation is even worse. Note that there is also a TCP transport builtin which could be used
to redirect traffic to the host. A user-space application could when apply link impairment.
Further research is needed to improve performance and offer link emulation capabilities.
Nevertheless, it is very useful to simulate 802.11 specific software. A use case of the WiFi
network backend is demonstrated in Section 6.4.3.
The Bridged network backends differ only slightly: The Bridged LAN provides a bandwidth
of 5848.5 Mbps while the Bridged WiFi network backend offers 5867.6 Mbps of bandwidth.
This is interesting since ebtables does not seem to reduce bandwidth. But since the standard
derivation is 204.1 and 143 respectively, this may the due to the measurement even though
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Figure 6.9: Network Backend Delays

it has been repeated 10 times and the iperf measurement has been given 240 seconds for the
TCP bandwidth test.

6.4.2 Round Trip Times

Not only the bandwidth of network backends is important. The delay of packets is crucial
to some protocols. Therefore, the RTT of all networks backends has been examined. Figure
6.9 shows the results gather by the ping command over 240 seconds. All 4 subplots share
the same x and y axis. The red line depicts the average maximum delays since the study
has been conducted 10 times. The avg is therefore taken from these runs. With slightly more
than 1.4 ms the Avg Max (red line) is the highest for VDE. The Bridged network backends
provide the same delay characteristics since both use Linux bridges. The Avg Mean (yellow
line) of both is less than 0.4 ms. The WiFi network backend has approximately 0.5ms as the
Avg Mean value. The highest Avg Mean value has the VDE network backend (approximately
0.8ms). Since the number of ports is very high for the VDESwitches by default (65537),
this might have influenced the measurement in the same way it has for the bandwidth
experiment. In summary, all network backends provide good RTTs values.

105



6 Evaluation

6.4.3 Distributed mac80211 hwsim showcase

The WiFi network backend is the only network backend which provides real WiFi NICs to
guests6. Most routing protocols do not require WiFi interfaces. Even though B.A.T.M.A.N.
operated at layer 2, a normal lan device is sufficient since no characteristics of the wireless
channel are required. This is different for 802.11s which has a modified MAC layer.
To present the feasibility of the WiFi network backend, a study has been conducted with
802.11s. A Chain 32 topology has been built by controlling with whom a WiFi station is
allowed to peer itself. The command7 in Listing 34 can be used to control the routing.

1 iw dev <device> station set <mac> plink_action block

Listing 34: 802.11s Peer Link Blocking

For all except the direct neighbours, link peering is disabled, hence a Chain topology is
created.
Listing 35 shows the Pre Network Shell Commands used for the study.

1 {

2 "provisioning":

3 "shell": {

4 "pre_network_start": {

5 "shell_cmds" : [

6 // configure 802.11s

7 "modprobe mac80211_hwsim radios=1",

8 "ip link set wlan0 down",

9 "ifconfig wlan0 hw ether 02:00:00:00:00:‘printf ’%02x’

{node_id}‘",↪→

10 "iw dev wlan0 set type mp",

11 "ip link set wlan0 up",

12 "iw dev wlan0 mesh join miniworld freq 2412",

13 // wifi ip

14 "ip addr add 10.10.10.{node_id}/24 dev wlan0",

15

16 // multicast routing

17 "ip addr add 172.21.0.{node_id}/16 dev eth0",

18 "ip l s dev eth0 up",

19 "route add -net 224.0.0.0 netmask 224.0.0.0 dev eth0",

20

21 // start wmediumd

22 "cd /root/wmediumd/ && wmediumd/wmediumd -c 32.cfg &"

23 ]

24 }

6Limited to Linux since the network backend requires the mac80211 hwsim kernel module.
7https://github.com/o11s/open80211s/wiki/HOWTO. Last viewed on 02.12.2016.
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Figure 6.10: Wireshark Capture Of 802.11s Beacon Frames and ICMP Ping

25 }

26 }

Listing 35: WiFi Network Backend 802.11s Scenario Config

First the mac80211 hwsim is loaded (line 7) with 1 radio device. The MAC address has
to be changed (line 9) since they are the same for each node (02:00:00:00:<nr>:00). The
{node id} string is replaced by MiniWorld with the actual node id (starting with 1). The
mesh mode is activated in line 10. A mesh network with the name miniworld is created in
line 12. IP addresses are assigned from the 10.10.10.0/24 subnet. Multicast routing (lines
16-19) is required so that 802.11s frames can be distributed to all nodes via a multicast group.
Finally, the modified wmediumd binary is started (line 22). The config file 32.cfg contains the
MAC mapping between node ids and the MAC addresses and is required by wmediumd. In
future releases it may get deleted.
Figure 6.10 shows a Wireshark capture on the hwsim0 device which is in monitor mode such
that all frames can be received. A radiotap header is added to the frames so that WiFi specific
settings such as bandwidth and signal strengths are viewable. The 802.11 protocol can be
seen in the Protocol row. Moreover, Figure 6.10 highlights the id of the mesh network in the
detail view of the bottom of the Figure.
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Figure 6.11: Distributed mac80211 hwsim Showcase

1 root@miniworld32:~# iw dev wlan0 mpath dump

2 DEST ADDR NEXT HOP IFACE SN METRIC QLEN

EXPTIME DTIM DRET FLAGS↪→

3 02:00:00:00:00:01 02:00:00:00:00:1f wlan0 5 245961 0

3476 0 00x15↪→

4 02:00:00:00:00:1f 02:00:00:00:00:1f wlan0 0 8193 0

3476 0 00x11↪→

Listing 36: 802.11s Mpath Dump

After the Chain 32 topology has been started, routing has been verified by pinging nodes
1 and 32 from node 32. Listing 36 outlines that the route to 02:00:00:00:00:1f (node 31) is
through node 31. The same applies for node 1 (02:00:00:00:00:01). Moreover, the Metric is
depicted in the Listing and is worse for the path to route 1 compared to the route to node
31.
To prove that the modifications to wmediumd did not change crucial aspects of the wireless
NIC, its behaviour has been compared with mac80211 hwsim. For that purpose, the same
Chain 32 topology is set up by creating 32 LXC namespaces and putting each WiFi device
into the appropriate namespace. For that, a test script8 from wmediumd has been modified.
Figure 6.11 outlines the results of performing an iperf measurement from node x to node
1. Traffic is therefore routed along the chain. The measurement is based on TCP with a
duration of 240 seconds. The results are identical for the WiFi network backend study (red
line) and the mac80211 hwsim experiment (yellow line). The bandwidth decreases while
the size of the routing chain increases. Interestingly the bandwidth is more than 2 times
higher for mac80211 hwsim for x=2. Note that the VMs are only given 1 CPU core while the

8https://github.com/bcopeland/wmediumd/blob/master/tests/n-linear-mesh.sh
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(a) Chain 6 (b) Cycle 6 (c) Wheel 6 (d) Grid 6

Figure 6.12: Differential Switching

LXC namespaces are not limited in terms of CPU. The WiFi network backend creates higher
CPU load (green line) due to full system virtualization and the modified wmediumd binary.
Interesting is that even the container version did not result in higher throughput since CPU
is not the bottleneck.

6.4.4 Connection Switching Times

Mobile nodes change their positions frequently, hence switching between different topolo-
gies needs to be fast. The following Section investigates the network switching of the Bridged
network backends since the WiFi network backend does not offer connection switching at
the time of writing and the VDE network backend did not show good enough results such
that it is usable as a network backend for wireless emulation. Additionally, the VDESwitch
seems to have a hiccup if the process is running with 100% CPU utilization on one core. The
result is that the REPLable mechanism had to send commands several times until they have
been processed.
Note that in the following experiments the management network has not been taken into
account because it is only created once after all nodes are started. Moreover, its setup relies
on the same commands and techniques which are evaluated in the following.
Different topologies have been created via the Core UI with the help of the topology gener-
ator. Figure 6.12 depicts the topologies with 6 nodes: In 6.12a a Chain 6 is built. A Cycle 6
topology (6.12b) includes additionally a link between the first and the last node. By con-
necting each node with the first one, a Wheel 6 has been created (6.12c). A Grid 6 topology
(6.12d) cannot be simply changed from a Wheel 6 topology. The number of 6 nodes were
only chosen for the graphical representation. Figure 6.13 outline the results from switching
between these topologies but with 128 nodes instead. The Execution Mode is iproute2 with all
Execution Options enabled. Moreover, the CORE Mobility Pattern is used to switch between
CORE XML topologies.
The first two bars of each bar chart show the Differential Network Switching capability,
since only the differences between topologies are changed. For example switching between
Chain 128 and Cycle 128 requires less than a second (red bar at Cycle 128) since the Step Time
of the RunLoop is 1 second by default. Therefore each step takes at least one second. The
Differential Network Switching feature is provided by the NetworkManager and hence every
network backend benefits from it automatically.
The values of the green and blue lines have been created by defining the appropriate topol-
ogy as the only one in the Scenario Config. Therefore no Differential Network Switching can be
performed. In all topology switching cases depicted in 6.13, Differential Network Switching is
faster compared to the Full Network Switching. The used network backend is the Bridged WiFi
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Figure 6.13: Network Switching Topologies (WiFi Network Backend)

network backend. Moreover, the Figure illustrates that Network Checking (NC) increases
switching times since NICs need to configured in terms of IP addresses and the network
connectivity needs to be checked with the ping command. Since Network Checking is
an important feature to ensure that a network topology has been switched correctly, the
additional times can be neglected.
The connection switching times of the Bridged network backends and especially the Execu-
tion Modes and Execution Options are further investigated in the following.

6.4.5 Bridged WiFi Network Backend

The connection switching times of the Bridged WiFi network backend are depicted in Figure
6.14. Note that for the Pyroute execution mode, the transactional database IPDB worked for
smaller topologies but showed errors for the Grid 128 topology used by the study depicted
in 6.14. The problem9 has been reported and is discussed on GitHub at the time of writing.
On the x-axis the Execution Modes are shown whereas the Execution Options and combina-
tions of them are illustrated by each bar color. The abbreviations for the Execution Options
are as follows: P stands for Parallel, B for Batch and O for One Shell Call.
For all Execution Modes the sequential mode is the slowest (-/-/-). Adding the One Shell
Call option (-/-/O) reduces the amount of time by approximately factor 4 and more for all
Execution Modes. The One Shell Call option reduces overall switching times since for each
second bar the times are reduced.
Note that for the Pyroute (IPBatch) execution option the Execution Options only effect the
ebtable command which is used to govern over connectivity. The batch mode of Pyroute2 is
enabled by default. Therefore, the influence of the Execution Options to ebtables are depicted
in the Pyroute2 (IPBatch) execution option. The One Shell Call option reduces the number
of ebtable commands (-/-/O). The batch mode allows to communicate only once with the
kernel to update the tables and adds another performance improvement (-/B/O). Running
the ebtable commands in parallel (P/-/-) improves performance compared to (-/-/-) only a
little. The reason for this might be the lock which is used by the atomic file to store ebtable

9https://github.com/svinota/pyroute2/issues/304
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Figure 6.14: Network Switching Modes Single

table updates. Note that MiniWorld enables the locking mechanism by default. A more
improved batch mode for ebtables where switching commands are only sent once to the
program (for example via stdin) could further improve switching times.
The Brctl command has no batch mode, hence (-/B/-) does not improve performance for
the Brctl execution mode. The parallel mode improves performance a little (P/-/-) com-
pared to (-/-/-), but the One Shell Call execution option shows again the best performance
improvements (-/-/O).
The same arguments apply for the Iproute2 execution mode. Since Iproute has a batch mode
the combination (-/B/O) further improves performance.
For all except Iproute2 the (P/B/O) combination is the fastest. For Iproute2 the combination
(-/B/O) is the fastest, but since the One Shell Call execution mode is prioritized over the
Parallel execution mode this may be due to outliers since the standard derivation is is high
for all measured times.

6.4.6 Bridged LAN Network Backend

Figure 6.15 depicts the switching times for the Bridged LAN network backend. The sequen-
tial mode (-/-/-) is very slow since for every connection a bridge and two NICs are required.
The batch mode of Iproute2 (B/-/-) enables commands to be run in one batch operation,
at least for the Iproute2 execution mode. Note that ebtables is not required for the Bridged
LAN Network Backend, hence the batch mode of Iproute can be measured alone. The One
Shell Call (-/-/O) and Parallel (P/-/-) execution options do not achieve as good switching
times as (B/-/-) does. Since the batch mode is prioritized over the other options, the fastest
switching times are all combinations where the batch mode is involved.
In the Brctl execution mode, all bridge related commands require a brctl call. Therefore,
only changing the NIC state can be performed by Iproute and thus also its batch mode.
Again, the One Shell Call execution mode shows better performance compared to the Parallel
execution mode even though there is no lock for the brctl command as there is for the ebtables
command.
The switching times for the Pyroute2 (IPBatch) execution mode are the same for all combi-
nations since they do not affect it and the batch mode is enabled by default.
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Figure 6.15: Network Switching Modes Multi

6.4.7 Summary

To sum it up, one should always enable all Execution Modes. All commands which support a
batch mode make use of it. One Shell Call is prioritized over the Parallel Execution Option
since both parallelize command execution but One Shell Call showed better performance.
Since the Parallel execution option is slower than the One Shell Call Option, there is no reason
to keep it inside MiniWorld.
Iproute2 emerged as the fasted switching Execution Mode but requires a correct version to
be compiled. Brctl worked always correct without any modification or updates required.
The Pyroute2 execution mode may be a good compromise between both since it offers good
switching times and did not cause any problems in the tested version. Moreover, there is
less complexity in the implementation.
The switching for the Bridged LAN network backend is faster compared to the Bridged
WiFi network backend since ebtables is not involved. The experiments did not include the
Network Checking for the network backends. For new connections in the Bridged LAN
network backend the NICs in the VMs need to be configured. This could be changed since
the connections are known beforehand, but removes the dynamic character of the network
backend. In contrast, the NICs in the Bridged WiFi network backend can be configured once
in the first step.

6.5 Distributed Emulation

In the following the distributed mode of MiniWorld is evaluated. Initially, the coordination
from the Coordinator with its Clients is examined in Section 6.5.1. For further tests, a new
test system is introduced in Section 6.5.2. The boot times of nodes which are distributed
across a cluster is studied in Section 6.5.3. The network switching times are examined in
Section 6.5.4. Since tunnels between clients may introduce further delays, they are studied
in Section 6.5.5.
Finally, a study with the Serval10 Delay-Tolerant Networking (DTN) software is presented
in Section 6.5.6. 7 computers in total allowed to setup a Chain 256 network topology. All
distributed experiments have been performed with Docker containers. For that purpose,

10http://www.servalproject.org/
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Figure 6.16: Distributed Coordination Step Times

on each client a MiniWorld Docker container has been deployed. To allow communication
among the containers on the IP layer (for the Gretap tunnels), the –net=host option from
Docker has been used so that containers are not put into an extra network namespace.
If not stated explicitely, the Publish-Subscribe communication pattern with MessagePack
serialization is used. Moreover, iproute2 with all Execution Modes and Execution Options is
used.

6.5.1 Distributed Coordination

The bottleneck in the distributed mode is the communication of the coordinator with its
clients (server hosting a MiniWorld instance which is running in client mode) as well as the
performance of tunnels between virtual nodes (node in MiniWorld). The step times across
the network have been evaluated with Docker containers. This enabled the simulation
of arbitrary number of servers but does not incorporate real network conditions. Since
nodes are started in parallel, not more than 128 servers could be simulated because then
each server starts one virtual node. Therefore 2 virtual nodes per core are started in parallel.
Higher number of clients pushed the test system to its limits.
Figure 6.16 points out the time required to coordinate the clients. The distance matrix is sent
by the coordinator either via the Request-Reply or the Publish-Subscribe pattern. After a client
has performed all its actions associated with a step (node starting, connection switching,
etc.), it syncs with the coordinator so that all clients are in sync before a new step is performed
by the coordinator. These step times are depicted in Figure 6.16. To visualize step times
smaller than 0, the step time has been set to 0. Therefore, the coordinator waits 0 seconds
after is has synced all clients before it performs a new step call. The Request-Reply pattern
(red and yellow lines) is slower for all number of clients. Sending each client the same
distance matrix (red line) is faster than filtering out the relevant parts for the clients at the
coordinator side (yellow line). The reason for this is that the distance matrix of the Chain 128
topology is not very big. Filtering out the relevant parts of the distance matrix at client side
parallelizes the filtering. The performance gains of the Publish-Subscribe pattern shows
especially for 128 clients where the Request-Reply pattern takes over a second (more than
a default time step in MiniWorld) whereas the Publish-Subscribe pattern requires less than
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Resource Value

Host OS Ubuntu 16.04.1 LTS

Docker OS Ubuntu 14.04.5 LTS

Virtualization Technology KVM

Kernel 4.4.0-38-generic

RAM 2x DIMM DDR3 Synchronous 1600 MHz 8GiB

CPU Intel(R) Core(TM) i7-4771 CPU @ 3.50GHz

CPU Cores Physical/Virtual 4/8

Network Intel Corporation Ethernet Connection I217-LM (rev 04)

Iproute2 Git release v4.2.0

Qemu Git release v2.7.0

Table 6.3: Technical Data Test System 2

a quarter second. Additionally, serializing messages with MessagePack instead of JSON
reduces further coordination time (blue line).

6.5.2 Test System 2

The following experiments are based on another test system. The distributed mode of
MiniWorld is evaluated with 5 computers which are virtualized by KVM. The technical
details of the computers are homogenous and are depicted in Table 6.3. Each computer has
a Core i7 processor with 4 physical and 8 virtual cores. Hence, 8 Qemu processes are started
in parallel. Moreover, it has 16 GiB of memory and a gigabit ethernet card. In contrast to
Test System 1, a newer Ubuntu LTS release is used. Therefore, also a newer kernel is used.

6.5.3 Boot Times

The following experiment demonstrates the CPU bottleneck which occurs if too much VMs
are run on a single machine. Test System 2 has been used for the experiment. 5 KVM VMs are
used in MiniWorld’s distributed mode as clients. For that purpose, MiniWorld is deployed
by means of Docker on each client. 40 OpenWrt Barrier Braker nodes are started by n clients
where n is increased by 1 until all 5 clients take part in the distributed emulation.
The boot times (Selectors Boot Prompt) are depicted in Figure 6.17. Nested virtualization
poses high CPU resources since 40 nodes could be started in 58.4s on the same machine
type but bare-metal. The start of 40 nodes with a single KVM virtualized client took 640.2
seconds (red bar). The first VMs are started faster than the last ones since the already started
VMs show high CPU usage even in idle mode.
Doubling the number of clients reduces the boot times to 263.7 seconds (factor 2.4). With
a total of 5 clients, the boot times could be lowered to 95.8 seconds. Hence, the total boot
times could be reduced by factor 6.7. The savings are huge since the clients resources are
overcommitted with 40 nodes.
Even for only 20 nodes, the boot times could be reduced by factor 5.4 (from 259.3 s to 47.8s).
The Snapshot boot mode could not be evaluated at all, since KVM showed a bug11. The bug

10https://github.com/svinota/pyroute2. Commit ID: commit 13f1adb1ab2d5ca8927f1eb618bbb9317-
0b61c33

11https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1530405. Last viewed on 12.12.2016.
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did not arise for Test System 1, hence it may be due to a different kernel version. Even Qemu
version 2.7.0 did not solve the problem.
Even though 5 clients have been used in the distributed mode, an unvirtualized computer is
still faster at booting 40 OpenWrt Barrier Braker nodes (58.4s). Hence, nested virtualization
should be avoided.

6.5.4 Network Switching

The network switching times of the distributed mode are depicted in Figure 6.18. 5 clients
have been used to run 40 OpenWrt Barrier Braker nodes with the Bridged WiFi network
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backend and the Fixed-Range model without any Link Impairments. The figure points out
that without any tunnels, the time of a time step (1 second), is not exceeded. Only the Wheel
40 topology requires more than 1 second since for every connection to node 1 (39), a tunnel
has to be created.

6.5.5 Tunnel Delays

Tunnels introduce overhead, since frames need to be encapsulated by a PDU.

1 ip route add 10.0.0.3 via 10.0.0.2

2 echo 1 > /proc/sys/net/ipv4/ip_forward

Listing 37: Setup Routing For Node 1 To Node 3 Via 2
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Figure 6.19: Distributed Mode: Tunnel Overhead, 5 OpenWRT BB Nodes, Test System 2, Fixed-Range Model,
Bridged WiFi Network Backend, No Link Quality Impairment

For Gretap, each frames is wrapped into an IP packet. The following experiment examines
the overhead which tunnels pose on bandwidth and delay. A Chain 5 topology is used
which routing setup between all nodes. Routing has been configured with the commands
depicted in Listing 37. Additionally, all OpenWrt configured iptables rules are removed
after VM boot. 5 clients and 5 OpenWrt Barrier Braker nodes are used. The x-axis depicts
the number of clients. The scheduling algorithm is NodeDistributionEqual. Hence, the nodes
are equally scheduled on the clients. Since not the same number of nodes can be placed on
all clients, the remaining ones are scheduled round-robin. Delay is studied with the ping
command whereas the bandwidth is measured with iperf. Both tests connected from node 1
to node 5 and recorded data in a 60s experiment which has been repeated 10 times.
For x=1, all nodes are placed on one client only. Hence no tunnels are used at all. The
examined average bandwidth is 482.3 Mbps. The average delay is 5.8ms. If the Chain 5
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Figure 6.20: Serval Peer Discovery, Distributed Chain 256, 7 Computers

topology is distributed among all clients (x=5, one node per client), the bandwidth reduces
to 437.3 Mbps and the RTTs increase to 9.8ms.

6.5.6 Serval Study

MiniWorld has already been used to simulate a Chain 64 topology with the Bridged LAN
network backend [4]. The distributed show case which is presented in the following, was
able to run a Chain 256 topology. For that purpose, Test System 1 and 2 have been combined.
Additionally, an unvirtualized computer with the same hardware specifications as described
by Test System 2 but with 32GiB of memory has been added. 7 computers in total, provided
384 (5 ∗ 16 + 32 + 256) GiB of RAM and 112 virtual CPU cores (6 ∗ 8 + 64). 5 of 7 computers
were virtualized with KVM. The code of the experiment has already been illustrated in
Section 5.8.3. On all nodes Servald is started sequentially. After all instances are started, the
Serval peers of node 1 are logged. The results are depicted in Figure 6.20. X is the time
required to start all Servald instances. It took 92s to discover all peers after Serval has been
started on all nodes.
More interesting is the scheduling of nodes across the servers. The capabilities of the nodes
as well as the scheduling decisions of the NodeDistributionScore scheduling algorithm are
shown in Table 6.4. Client 2 is the computer from Test System 1 and has 64 virtual cores
and 256GiB of RAM, therefore it gets 120 nodes assigned since the bogompis value is very
high. This is the computer which has been used for the non distributed experiments. The
Qemu nodes are assigned 512MiB of memory, thus using 120 ∗ 512 = 61, 440MiB on client
2. 6 of the clients have the same hardware, but only client 3 is not virtualized with KVM
which results in a slightly higher bogompis value. The small difference is not enough to get
more nodes assigned than the virtualized clients. The last clients gets the remaining nodes
assigned due to floating point inaccuracy and because only whole nodes can be scheduled.
The CPU usage of the cluster is illustrated in Figure 6.21. The second last two clients are
not virtualized with KVM and thus provide better performance. Nested virtualization shows
higher CPU values in the experiment (nodes 1-5) which is not taken into account by the
scheduling algorithm. The overall CPU usage of the cluster is sufficient for the Serval Chain
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Client Hostname Bogomips Free RAM (MB) #Nodes

1 Andro* 55870.56 15117 23

2 BigBox 294406.4 225214 120

3 Rechenschieber 55871.04 29605 23

4 Andro* 55870.56 15051 23

5 Andro* 55870.56 15529 23

6 Andro* 55870.56 15232 23

7 Andro* 55870.56 15135 21

Table 6.4: Cluster Resources
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Figure 6.21: CPU Usage Serval Chain 256

256 topology at least for node discovery. The Softirq CPU value of the Bigbox client is very
high. Drivers are encouraged to perform work in software interrupts such that they do not
block the interrupt handler very long [47]. An explanation for the high Softirq value may be
the high number of virtual NICs and also the number of Serval nodes which are trying to
discover each other.
The System CPU value is higher for the unvirtualized nodes (Rechenschieber, BigBox) which
points out that nested virtualization poses high requirements on the CPU.
Figure 6.22 depicts the CPU usage of a 512 Chain with Serval which did not succeed in
discovering each other. The Figure points out that the CPU usage was too high for the
computers, especially the unvirtualized ones (nodes 1-5). Moreover, the Softirq value was
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very high for the Bigbox. The unfair scheduling of nodes has been shown in the boot times
of nodes. The Bigbox was waiting for slower nodes, thus reducing the overall performance
since all computers are kept in sync. 4790 seconds were required to only start Servald
sequentially on all nodes.

6.6 Summary & Best Practice

The experiments outlined which settings help getting out the best performance out of
MiniWorld. Choosing a VM image for an experiment depends on the properties which are
important for the study: OpenWrt provides only the base system for router images resulting
in a smaller image size and less CPU and RAM consumption. Even though other Linux
distributions include a netinstall image, an OpenWrt installation is still smaller. The VM
image choice is a tradeoff between performance and flexibility.

6.6.1 Boot Mode

The Shell Prompt boot mode shall be preferred if the user is able to place a custom signal
to the end of the boot process. The Boot Prompt mode can be chosen too, but the user has
to check whether the Boot Prompt is displayed late enough in the boot process. The start
times of both modes should be neglected since the Snapshot Boot mode prevents VMs
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6 Evaluation

Property WiFi VDE Bridged LAN Bridged WiFi

WiFi NIC y - -

Mobility Pattern - All CORE All

Link Quality Model* - 1 2,3 2,3

Broadcast Domain y y - y

Interfaces: Management/Hub -/- y/y y/y y/y

Distributed Mode ?12 - Gretap/VLAN/VXLan Gretap/VLAN/VXLan

Link Impairment - Wirefilter TC (HTB+Netem) TC (HTB+Netem)

Connection Switching - Wirefilter Iproute2/Pyroute2/Brctl Iproute2/Pyroute2/Brctl

Table 6.5: Network Backend Features

Index Link Quality Model

1 Fixed-Range

2 WiFi Simple Linear

3 WiFi Simple Linear

Table 6.6: *Link Quality Models

from being rebooted for a new experiment. Instead, VM snapshots are loaded. The user has
to take care of setting the correct names for scenarios, since they are used for the snapshot
names. Moreover, if the configuration of Qemu changes, a reboot is required.

6.6.2 Network Backend

Choosing the best suited network backend depends on the user requirements. Table 6.5
depicts the features of each network backend. The WiFi network backend is the only one
which provides a wireless NICs to Linux guests, but does not provide link impairment
and connection switching. All nodes are placed in a single collision domain. Moreover,
experiments showed that it only provides 165.1 Mbps of bandwidth with a single CPU core.
Nevertheless, it is the only option if a real WiFi NIC is required. Usage examples are 802.11s
or WiFi operation modes such as AP and Ad Hoc.

The VDE network backend requires further improvement. Moreover, no connection
switching experiments have been performed at the time of writing since first VDE’s band-
width bug has to be fixed. The Bridged LAN network backend is the best choice for the
emulation of wired networks since packets are not broadcasted to every connected node.
The limitation is that the number of connections need to be known beforehand so that only
the CORE Mobility pattern is supported at the time of writing.
The Bridged LAN allows to be used with every Mobility Pattern and places interconnected
nodes on the same collision domain, thus mimicking the wireless broadcast nature.
Network Checking should be enabled to ensure that the network is set up correctly.

12The WiFi network backend has not been evaluated in the distribute mode at the time of writing, but
multicast routing should enable the distributed communication of nodes.
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6.6 Summary & Best Practice

Bridged Network Backend Options

If one of the Bridged network backends is used, all Execution Options should be activated
for best connection switching times. Moreover, the Iproute2 execution option yields the best
results but may require manually compiling the correct Iproute2 version. A good compromise
is the Pyroute2 execution option, although it lacks transparency since no commands are
logged. The Brctl execution option yields slow switching times but worked out of the box in
the experiments.

6.6.3 Distributed Mode

The NodeDistributionScore scheduling algorithm should be chosen if the hardware re-
sources of the clients in the distributed mode is not homogenous. Otherwise the NodeDis-
tributionEqual can be chosen to achieve a uniform distribution of nodes among clients. The
Publish-Subscribe pattern with MessagePack as serialization format should be preferred
for client coordination since it showed the best results.
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7 Conclusion

A distributed emulation framework called MiniWorld has been presented. The typical
workflow of MiniWorld and its architecture have been illustrated in detail. MiniWorld
is modular, flexible and exchangeable which is outlined by the integration of 4 network
backends. The design incorporates adding a new virtualization layer or network backend.
To overcome the performance penalties which are introduced by full system virtualization,
a Snapshot Boot mode has been developed. Additionally, an emulation can be distributed
across many computers. A special Scheduling Algorithm for node placement has been
developed which is aware of the the critical resources which can lead to bottlenecks during
an emulation.
MiniWorld offers a real WiFi NIC to its virtualized nodes. This enables MiniWorld to be
used as a WMN network emulator. A use case has been presented which shows the feasibil-
ity of the WiFi virtualization approach. For scenarios where no wireless card is required,
the Bridged WiFi network backend offers better bandwidth while consuming less CPU.
The network backend is based on Linux bridges, ebtables and Linux TC and enables link
impairments for every connection between two nodes. MiniWorld is not limited to wireless
emulation: The Bridged LAN network backend enables the emulation of wired networks
which shows the flexibility of the distributed emulation framework. A specially developed
CORE Mobility pattern eases the development of a network backend and the testing of
software since node movement is statically defined. Therefore, experimentally gathered
results are reproducible. If early prototyping is finished, more advanced mobility patterns
can be used instead. Since experiments require special note setup, shell commands can
be defined in the Scenario Config to bootstrap the experiment on all nodes. Furthermore,
most network backends offer a Management Network. The control channel can be used
for experiment monitoring, further automation and experiment supervision.
The distributed MiniWorld emulation framework provides Connection Tracking, Differen-
tial Connection Switching and especially Network Checking to every network backend.
In consequence, network backends are lightweight and fast. For shell based network back-
ends, the ShellCommandSerializer further optimizes switching times. Processes which
expose an API via a UDS can be integrated with the REPLable mechanism. Basic Link
Quality Models are integrated by MiniWorld to show the feasibility of link impairments
for the network backends.
The experimental evaluation outlined the bandwidth, delay and connection switching times
of the 4 network backends. Moreover, node boot modes have been studied. The feasibility
of the distribute mode has been presented by the Serval showcase.

7.1 Future Work

There are still improvements for MiniWorld: High fidelity link emulation and more ad-
vanced Mobility Patterns are required. MiniWorld could be combined with the realtime
scheduler of Ns-3 similarly to CORE and Dockemu. WiFi virtualization together with high
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fidelity emulation is not covered by literature to the best knowledge of the author.
Link impairment can only be applied to all interface types equally. Further experiments are
required to ensure that performance does not suffer from the introduced complexity, but
since link impairments of the Link Quality Models are precomputed, no additional perfor-
mance overhead can be expected.
For various scenarios, Docker containers could provide a lightweight alternative to KVM
where full system virtualization is not required. Moreover, since software is already pack-
ages into Docker images which are available via the Docker Hub, it would allow to easily
test distributed applications.
The Android emulator is built upon Qemu, hence MiniWorld could be easily extended
to support Android. Android is especially interesting, since geo locations1, can be sent to
emulated phones. Currently, only distances between nodes are communicated by the Move-
mentDirector, but location information could be added so that the location of Android
phones could be updated by MiniWorld.
The WiFi network backend requires further research since no link impairment is provided
at the time of writing. Moreover, all nodes are placed onto the same collision domain. The
VDE network backend suffers from performance penalties which depends on the size of the
VDESwitch. Further research is required to either fix the bug or circumvent it by increasing
the switch size dynamically if more links are required. Moreover, links are assumed to be
everlasting. Since the VDE network backend requires one user-space process per connection,
a possibility to remove a connection from the Connection Tracking mechanism should be
included.
Finally, since the topology generator of the CORE UI is limited depending on the topology
to approximately 128 nodes, a more advanced topology generator is required.

1https://stuff.mit.edu/afs/sipb/project/android/docs/tools/devices/emulator.html. Last
viewed on 06.12.2016.
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Appendix

Listing 38: Scenario Config Template

1 {

2 "scenario" : "scenario name",

3 "cnt_nodes" : 5,

4

5 "walk_model" : {

6 "name" : "RandomWalk",

7 "filepath" : "somepath"

8 },

9

10 "provisioning" : {

11 "image": "images/openwrt-x86-kvm_guest-combined-ext4-batman-adv.img",

12 "parallel" : true,

13 "boot_mode" : "selectors",

14

15 "regex_shell_prompt" : "(.*)root@OpenWrt.*[#]?",

16 "regex_boot_completed" : "procd: - init complete -.*",

17 "shell" : {

18 "pre_network_start" : {

19 "shell_cmd_file_path" : null,

20 "shell_cmds" : [""]

21 },

22 "post_network_start" : {

23 "shell_cmd_file_path" : null,

24 "shell_cmds" : [""]

25 }

26 }

27 },

28

29 "qemu" : {

30 "ram" : "32M",

31 "qemu_user_addition": "-hdb stick.img",

32 "nic" : {

33 "model" : "virtio-net-pci"

34 }

35 },

36
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37 "network" : {

38 "backend" : {

39 "name" : "bridged",

40

41 "connection_mode": "single",

42 "execution_mode" : {

43 "name" : "iproute2",

44 "parallel" : false,

45 "batch" : false,

46 "one_shell_call" : false

47 },

48 "event_hook_script" : "path to event script",

49 "distributed_mode" : "gretap",

50 "tunnel_endpoints" : {},

51

52 "num_ports" : null

53 },

54

55 "links" : {

56 "miniworld.model.network.linkqualitymodels.

LinkQualityModelRange.LinkQualityModelRange"↪→

57

58 "configuration" : {

59 "auto_ipv4" : true,

60

61 "connectivity_check" : {

62 "enabled" : true,

63 "timeout" : 60

64 },

65 "ip_provisioner" : {

66 "base_network_cidr" : "10.0.0.0/8",

67 "prefixlen" : 16

68 },

69 "nic_prefix" : "eth"

70 },

71 "interfaces" : ["mesh", "hubwifi"],

72 "bandwidth": 55296000

73 },

74 "core" : {

75 "topologies" : [

76 [10, "MiniWorld_Images/examples/core_scenarios/no_network.xml"],

77 [10, "MiniWorld_Images/examples/core_scenarios/chain_4.xml"]

78 ],

79 "loop" : false,

80 "mode" : "lan"

81 }

82 },

83
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7.1 Future Work

84 "distributed" : {

85 "node_id_mapping" : {},

86 "server_id" : 0

87 },

88

89 "node_details": {

90 "1": {

91 "walk_model": "RandomWalk",

92 "provisioning" : {

93 "shell_cmds" : ["echo miniworld"],

94 },

95 "qemu" : {

96 "qemu_user_addition": "-hdb other_stick.img"

97 }

98 }

99 }

100

101 }
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[4] Lars Baumgärtner, Paul Gardner-Stephen, Pablo Graubner, Jeremy Lakeman, Jonas
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