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Abstract—The mobile device sector has grown over the past
years. Most of us have a smartphone or tablet carrying with
us every day. But the advanced mobility also requires special
security enforcement as the devices store a lot of sensitive data
and can be easily stolen or lost.
Developers for the iOS platform have to pay attention to avoid
common pitfalls when developing applications. Buffer overflows,
format string vulnerabilities, SQL injections, Cross-Site Script-
ing, data leakage or theft are security issues which can happen
if user input has not been sanitized correctly.
This paper is meant to point out common mistakes in the iOS
app development by showing Objective-C and Swift source code.
Furthermore, it introduces the reader to the principles of reverse
engineering so that third party applications can be audited for
those bug classes.

I. INTRODUCTION

Mobile devices have made the way into our daily lifes.
Surfing, chatting, reading emails, playing games, listening to
music. We can do all of this with the little devices we carry
with us. In the year 2015, there is an app for everything. If we
need an application for making video calls, online banking or
creating documents, it is already there.
The question which arises is whether we can trust all these
apps. Do they protect our data? Or do they even leak them?
There is a long list of security threats like data theft, imper-
sonation, financial damage or even surveillance .
By now, Apples App Store offers more than one million apps
[1] and even big companies introduce bugs into their applica-
tions. For example Skype had a XSS vulnerability which made
the upload of the users address book to a malicious website
possible [2]. Starbucks stored credentials in plaintext on the
device so that an attacker with physical access could retrieve
them and log into the Starbucks website [3].
With the help of reverse engineering one can analyse appli-
cations and detect software vulnerabilities or bugs. Reverse
engineering works without inspecting the actual source code
just by looking at the binary. With a disassembler1, machine
language can be translated into assembler code. This low-level
representation of the application is complex to read but offers
the possibilty to perform a full app audit.
The paper is outlined as follows: In chapter II the iOS system is
briefly explained to the reader. Afterwards the basics of reverse
engineering, arm assembly language, fairplay encryption and

1All disassemblies shown, are done with the Hopper Disassembler. See
http://www.hopperapp.com

the Mach-O file format, enable the reader to dive into app
auditing in chapter III where the focus is on common security
pitfalls when developing iOS applications. Despite only enu-
merating them, attack vectors as well as countermeasures are
given. Finally chapter IV concludes the paper and all shown
bug classes together with the threats they introduce.

II. BASICS

As of this writing, the latest iOS version is 8.1. The operat-
ing system employs considerably more security features than
compared to the desktop. The additional security is necessary
because mobile devices carry on the one hand more sensitive
data and on the other hand devices can be lost much easier or
even get stolen.
For the protection of data, iOS encrypts each file which
offers a remote wipe feature. Files can be further encrypted
to safeguard them even if physical access to the device is
available. The development and distribution of applications
requires a membership in the iOS developer program. Each
developer has a Apple-issued certificate which is used to sign
the application so that it can be uploaded to the App Store.
Therefore all applications are submitted by an identifiable
person or organization [4].
The App Store review process checks for obvious bugs, the
usage of private APIs and other malicious behaviour [4], [5],
[6]. The mandatory code signing and review process ensures
that only Apple-approved applications can be run on the
device.
Furthermore, they are isolated from other apps as well as the
Operating System (OS). This is achieved by the sandboxing
mechanism which is also called seatbelt [6]. Each application
is bound to a unique home directory2 at the time it is installed.
The sandbox prevents the application from accessing files of
other applications or making changes to the system [4].

A. Reverse Engineering

1) ARM: iOS devices are ARM powered which is a
Reduced Instruction Set Computer (RISC). The platform offers
simple but powerful instructions with a large number of
General Purpose Registers (GPRs). In contrast to CISC, oper-
ations cannot be performed directly on the memory. Instead, a
load/store architecture has to be used to transfer data between

2On a jailbroken device one can inspect the app contents at /private/var-
/mobile/Containers/Data/Application/<UUID>/

http://www.hopperapp.com


memory and registers [7].
This paper focuses on the 32 Bit ARM architecture even
though new iOS devices are capable of running 64 bit code.
The 32 bit version has a 16 bit mode called Thumb which
increases code density. Luckily with ARMv7 there is a unified
set of mnemonics so that the disassembly looks the same
[8]. It features 16 GPRs from r0 until r15. The first four are
used for passing arguments while calling functions. Additional
arguments are pushed to the stack. Functions return values in
r0. Other important registers are:

• r7: Pointer to the current stack frame.
• r13/sp: Pointer to the top of the stack.
• r14/lr: The link register holds the return address of the

calling function.
• r15/pc: Stores the next instruction address.

Jumps are realized with the branch operation (b). An additional
l sets the link register (lr) so that the function can return to its
callee and x makes the exchange between ARM and Thumb
mode possible [9].

2) Objective-C: iOS Applications are written in Objective-
C or the new programming language Swift. The focus in this
work will be on Objective-C instead of Swift as it is still very
new and not much information about its runtime are public
yet.
Objective-C is a strict superset of C, therefore its architecture
is C-powered and application developers can use C too.
Objective-C differs in that methods are not called. Instead a
message is sent to the receiving object. This adds dynamic ca-
pabilities to the language. The function objc msgSend serves
as a dynamic dispatcher routine that walks the class hieararchy
until it reaches the class implementing the method.
The first argument when sending a message, is the receiving
object. The second is a selector which is a string represen-
tation of the method [10]. setObject:forKey: e.g. is a method
which needs two arguments (one for each ”:”). The first two
arguments for the selector are passed as arguments to the
objc msgSend function. All other arguments are pushed to the
stack [8].
Figure 1 shows an example of how message sending works

in Objective-C. It shows a ARMv7 disassembly of the code in
figure 2.
But before we analyse the function in more detail, we have

to look at the stack layout at the time before the function has
been called which is visualized in figure 3. Calling a function
means to put a new stack frame onto the stack. First of all,
lr and frame pointer (r7) are pushed onto the stack. This is
done in the so called function prologue to enable the callee to
return to its caller. Moreover, r7 is set to the stack pointer (sp)
and space on the new stack frame is allocated to hold local
variables. The assembler code subtracts 4 from the sp due to
the fact that the stack grows towards lower addresses and is 4
byte aligned [8].
At the beginning of each method, r0 holds the self reference
to the current class and r1 the selector. r2 and r3 contain the
first two function arguments. All others are mostly referenced

-[AppDelegate callWrapper]:

// function prologue
push {r7, lr} // save old base pointer, return addr
mov r7, sp // frame pointer = stack pointer
sub sp, #0x4 // allocate additional space on stack

// body
movw r1, #0x3402 // higher r1 = 0x3402
movs r2, #0x3 // r2 = 3
movt r1, #0x0 // lower r1 = 0x0
str r2, [sp, #0x4] // store 3rd argument on stack
add r1, pc // r1 = addr of selector(objCFunction:

arg2:arg3:)
movs r2, #0x1 // r2 = 1
movs r3, #0x2 // r3 = 2
ldr r1, [r1] // r1 = selector(objCFunction:arg2:

arg3:)
// [self(r0) objCFunction:1(r2) arg2:2(r3) arg3:3(sp

+4)]
blx imp___symbolstub1__objc_msgSend

// function epilogue
add sp, #0x4 // deallocate stack space
pop {r7, pc} // restore old frame pointer & retaddr

Figure 1. Objective-C Message Sending (Hopper disassembly)

- (void)callWrapper{
[self objCFunction:1 arg2:2 arg3:3];

}

Figure 2. Objective-C Message Sending Example

Figure 3. iOS stack layout [8]

through r7 (the base pointer) to access the stack of the caller.
Therefore values 1 and 2 are passed via the registers r2 and
r3 and the value 3 is passed via the stack to the function [self
objCFunction:arg2:arg3]. blx is the mnemonic responsible for
performing the branch.
In the same way the stack space has been set up, it gets
destroyed by adding 4 bytes to the sp. Restoring the old frame
pointer and popping the saved lr to the program counter (pc)
moves the control flow back to the callee.

3) ABI: All applications are stored as Mach-O which is the
default file format for iOS and OS X. It can contain multiple
architectures so that a universal application can ship 32 and
64 bit code in one binary (FAT binary). Mach-O consists of a



header that identifies the file format, load commands that set
up the internal layout and segments.
Each segment contains code or data for a particular type and
is further separated into sections. The most important ones
are: TEXT, DATA and OBJC. The first segment holds
the executable code ( text section) and read only data. The
second segment contains writable data. nl symbol ptr has
to be mentioned here as it contains non-lazy symbol pointers
which are indirect referenes from an import statement [8] and
needed for the app audit.
The last segment contains metadata about the Objective-
C program like the list of implemented classes in the bi-
nary ( objc classlist), references to classes from imports
( objc classref ) as well as categories, selectors and proto-
cols. The complete layout of the Objective-C part of the app
can be reverse engineered3 through this segment.

4) FairPlay: Applications are encrypted by default (de-
cryption key stored in keychain [10]) thus preventing reverse
engineering. However as they have to be decrypted during
runtime, this can be exploited to strip the entire encryption.
On a jailbroken device, this can be easily achieved with
dumpdecrypted [10]. Alternative one can use gdb to dump
the decrypted memory contents.

III. AUDITING IOS APPLICATIONS

In this section we focus on auditing iOS apps in terms of
security and common pitfalls during the development that can
lead to leakage of sensitive data or implement severe security
breaches.

A. Memory corruption

A major source of vulnerabilities in the C programming
language are buffer overflows and format string vulnerabilities.
Objective-C performs bounds checking but overflows are still
possible because it is a superset of C, hence it inherents all
security issues coming from C.

1) Format Strings: A format function like printf is used to
format datatypes according to a format string and outputs a
string.
The format string defines the behavior of the format function.
For each format specifier prefixed with ”%”, an argument is
taken from either a register or the stack (depending on the
calling conventions) and formatted.
Figure 4 depicts the printf format function. Its vulnerable
because the format string has not been supplied. Attacks are
possible if the format string gets processed by an untrusted
source. For example via user input, the network or the file
system [11].

char input[200];
// populate input
printf(input);

Figure 4. Vulnerable format string

3See https://code.google.com/p/networkpx/wiki/class dump z

If the attacker can control the format string, he can control
the behavior of the format function as well.
By supplying a specially crafted format string, an attacker
can crash the program, inspect the memory or even dump it
completely or write data to an arbitrary address in memory.
The format function holds a stack pointer internally. After
the first four values have been retrieved from registers, the
remaining ones are taken from the stack. Therefore, the
attacker can increase the sp and navigate through the stack.
He is able to read and write to arbitrary memory. To achieve
this, he needs to encode the memory address in the format
string. Since the format string mostly is located on the stack,
he can navigate to it by supplying enough format parameters
such as ”%.f” or ”%x” until the sp points to the format
string. This enables the attacker to supply his own arguments
to the format function. Format string vulnerabilities can be
detected very easily e.g. by Xcode and prevented by always
supplying a format string. Moreover, code should be written
in Objective-C where possible due to the fact that it doesn’t
support the ”%n” format specifier. [12] But even Objective-C
is not entirely safe, as with ”%@” a pointer may be called
under certain circumstances [13]. Despite printf there are a lot
of format functions available which have to be checked for
missing format strings:

• Classes: NS(Mutable)String, NSAlert, NSPredicate,
NSException, NSRunAlertPanel

• Selectors: format:, stringWithFormat:, initWithFormat:,
appendFormat:

• C functions: (f|sp|sn|as|d|v|vf|vs|vsn|va|vd)printf, syslog.
2) Buffer Overflows: A buffer overflow occurs if a program

writes beyond a buffer. This can happen if no proper length
checking of user input has been done. Like format string vul-
nerabilities, they can be used to overwrite memory and hijack
the control flow. Compared to format string vulnerabilities one
cannot write to arbitrary memory, but its easier to overwrite
it. Vulnerable functions and their safe equivalents [11] are:

• strcat, strncat → strlcat
• strcpy, strncpy → strlcpy
• sprintf → snprintf, asprintf
• vsprintf → vsnprintf, vasprintf
• gets → fgets

Apple also marks the ”n” functions like strncpy as unsafe, as
only e.g. strlcpy truncates the string at the second last character
and adds a null terminated character for the case that the string
which shall be copied is larger than the destination buffer.
Another countermeasure is to use Objective-C as it performs
boundary checking although libraries may still contain C code
[11]. Unsecure functions can be easily detected by looking at
the symbol table with the nm command.

3) Dangling Pointers: Until yet, we only dealed with
memory corruption on the stack. But for dynamically allocated
memory the heap plays an important role. Bugs arise if
allocated memory (with free(C) or alloc(Objective-C)) is used
or deallocated again after it already has been deallocated.
If an attacker can overwrie the previously deallocated memory

https://code.google.com/p/networkpx/wiki/class_dump_z


and the pointer is deallocated again (double-free) or used again
(use-after-free), he can contol the process execution [13], [14].
The problem only arises, if the application uses C code or
Objective-C without ARC. Otherwise the compiler takes care
of the memory management [14].

4) Bypassing Exploit Mitigation Techniques: iOS intro-
duced a lot of security features to prevent exploitation.
Traditional code injection attacks are mitigated by using the
No-eXecute (NX)-Bit of the ARM processor to mark the stack
and heap as non-executable. Nethertheless Data Execution
Prevention (DEP) can be circumvented through a technique
called Return Oriented Programming (ROP) [15]. ROP uses
e.g. a buffer overflow to hijack the control flow and uses so
called gadgets which are sequences of instruction found in
libraries or the main executable. These gadgets all perform
a certain functionality and are executed sequentially. They
provide a turing complete way of writing the attack payload
without the need to inject code [16].
Moreover, iOS prevents stack overflows with the help of
stack canaries. The Stack Smashing Protection (SSP) compiler
technique places a random value number between the local
variables of the stack frame and the functions return address
so that in the case of an overflow it can be detected4. This
protects the return address, saved frame pointer and function
arguments. The canary is placed at the stack during the
function prologue and checked upon the functions epilogue.
The protection can be activated with the ”-fstack-protector-all”
compiler flag [13].
Due to SSP one cannot overwrite the return address but the
app may use function pointers which can be overwritten. Davi
et al. show a ROP-attack without resorting to returns by using
indirect subroutine calls like BLX r3 [9]. If the attacker can find
and load a gadget that loads the return address from attacker
controlled memory, he can bypass SSP and DEP.
Even if DEP and SSP can be bypassed, there is still a
randomization of the process’s memory layout. Address Space
Layout Randomization (ASLR), which has been introduced in
iOS 4.3, loads the app executable, dynamic libraries, stack and
heap at a different location each time the app is loaded. Third
party applications are automatically compiled with ASLR if
Xcode has been used [4]. Although ASLR makes the addresses
unpredictable, it is vulnerable to information leakage. Because
it enforces only module level randomization, the memory
layout of a module can be inferred by getting one absolute
address [15].
Most of the time several vulnerabilities are combined to bypass
all security mechanisms.

B. Transport Security

iOS provides several APIs for network communication:
Depending on the level of control the developer needs, he can
choose between the URL Loading System and CFNetwork.
The first offers a high level of abstraction for retrieving

4If the binary is compiled with SSP, its symbol table contains the symbols
” stack chk fail” and ” stack chk guard” [10]. See ”otool -I -v” [13]

data specified through a URL. The latter offers fainer-grained
control and can be adopted to custom needs.

1) URL Loading System: The URL Loading System is an
Objective-C API that consists of several classes and protocols.
They support standard protocols like HTTP(S), FTP, local
file access or uploading data to a server.
The heart of the system is the NSURL class which can be
used by NSURLConnection to retrieve data via the network.
The class enables a delegate to respond to authentication
challenges by implementing the appropriate protocol methods.
Support authentication challenges are for example: HTTP
basic or form authentication, NTLM as well as SSL/TLS
authentication [6]. In general, all pieces of code where
authentication is implemented, are of special interest due to
the fact that credentials may be hardcoded, stored in a file or
database.
In the following, we are having a deeper look at how
to circumvent SSL/TLS certificate validation so that e.g.
debugging code can use self- signed certificates. If the
code hasn’t been removed, it can break the whole transport
security.
Objective-C properly verifies the SSL/TLS certificate
by default, but by implementing the protocol for
NSURLConnection, one can disable it.

Figure 5 shows two methods. The first method signals

- (BOOL)connection:(NSURLConnection *)connection
canAuthenticateAgainstProtectionSpace:(
NSURLProtectionSpace *)protectionSpace {

return [protectionSpace.authenticationMethod
isEqualToString:
NSURLAuthenticationMethodServerTrust];

}

- (void)connection:(NSURLConnection *)connection
didReceiveAuthenticationChallenge:(
NSURLAuthenticationChallenge *)challenge {
[challenge.sender useCredential:
[NSURLCredential credentialForTrust:challenge.

protectionSpace.serverTrust]
forAuthenticationChallenge:challenge];

}

Figure 5. URL Loading System Security prior iOS8 [17]

that the delegate can handle the authentication method
NSURLAuthenticationMethodServerTrust which is a symbolic
string for SSL/TLS. Therefore it’s responsible for performing
the actual authentication and evaluating the trust, before
creating the NSURLCredential object, which is not done in
the second method.
The disassembly of the first method is depicted in
figure 6. Custom certificate handling can be found by
searching for NSURLAuthenticationMethodServerTrust
in the nl symbol ptr section. For iOS 8, the above
methods are deprecated. The replacement is the method
connection:willSendRequestForAuthenticationChallenge:
which can be implemented exactly as connec-
tion:didReceiveAuthenticationChallenge: shown in Figure 5.
Another way to circumvent certificate validation is to use



-[AppDelegate connection:
canAuthenticateAgainstProtectionSpace:]:

push {r4, r5, r7, lr} // save reigsters
movw r0, #0x3bd8 // higher r0 = 0x3bd8
add r7, sp, #0x8 // set r7 above saved registers
movt r0, #0x0 // lower r0= 0x0
add r0, pc // addr of selector(

authenticationMethod)
ldr r1, [r0] // load selector from addr
mov r0, r3 // r0 = arg2 = NSURLProtectionSpace
// [arg2(r0) authenticationMethod(r1)]
blx imp___symbolstub1__objc_msgSend
mov r7, r7
// [[arg2 authenticationMethod]

retainAutoreleasedReturnValue]
blx imp___symbolstub1__objc_retainAutoreleased

ReturnValue
mov r4, r0 // r4 = return value of branch
movw r0, #0x30e2 // higher r0 = 0x30e2
movt r0, #0x0 // lower r0 = 0x0
movw r1, #0x3bb8 // higher r1 = 0x3bb8
add r0, pc //

imp___nl_symbol_ptr__NSURLAuthenticationMethod
ServerTrust

movt r1, #0x0 // r1 = 0x0
add r1, pc // addr of selector(isEqualToString:)
ldr r0, [r0] //

imp___nl_symbol_ptr__NSURLAuthenticationMethod
ServerTrust

ldr r1, [r1] // r1 = selector(isEqualToString:)
ldr r2, [r0] // r2 =

_NSURLAuthenticationMethodServerTrust
mov r0, r4 // r0 = arg2
// [arg2(r0) isEqualToString:

_NSURLAuthenticationMethodServerTrust(r2)]
blx imp___symbolstub1__objc_msgSend
mov r5, r0 // r5 = [arg2 isEqualToString:

_NSURLAuthenticationMethodServerTrust]
mov r0, r4 // ro = r4
// [[[arg2 authenticationMethod]

retainAutoreleasedReturnValue] release]
blx imp___symbolstub1__objc_release
mov r0, r5 // return r5 => delegate can/

cannot handle challenge
pop {r4, r5, r7, pc} // restore registers

Figure 6. [NSURLConnectionDelegate connec-
tion:canAuthenticateAgainstProtectionSpace:] disassembly

Apples private Application Programming Interfaces (APIs).
For instance the class NSURLRequest offers the private
method setAllowsAnyHTTPSCertificate:forHost: which can be
called to allow exceptions for certain hosts. Another way is
to define a category on NSURLRequest and provide a runtime
patch for the method allowsAnyHTTPSCertificateForHost: by
returning YES for all trusted hosts [18].
As both possibilities use Apples private APIs, it might be
detected by the App Store review process and could get
rejected. Nethertheless it’s worth having a closer look at it.

2) CFNetwork: A low-level framework for network com-
munication is CFNetwork. Based on BSD sockets, it of-
fers a way of reading and writing synchronously or asyn-
chronously bytes to or from a stream with CFReadStream and
CFWriteStream. In contrast to the URL Loading System where
the main purpose is data access, CFNetwork’s focus is more
on network protocols [19]. Due to the fact that the API is

low-level, the fainer-grained control allows the developer to
influence the SSL/TLS certificate validation in such a way that
not just only the validation of the trust chain can be disabled,
but also a custom name can be used for name verification or
disabling it at all. Moreover, the security level can be set to
a specific SSL/TLS version. Figure 7 shows the methods to

// populate settings dictionary
CFReadStreamSetProperty(inputStream, <kCFStream* key

>, settings);
CFWriteStreamSetProperty(outputStream, <kCFStream*

key>, settings);

Figure 7. CFNetwork Transport Security [20]

achieve this on a CFReadStream or CFWriteStream. The first
argument of the methods is the stream. The second parameters
specifies the property on which a value shall be set and
the third argument is a dictionary containing the appropriate
values. E.g. kCFStreamSSLValidatesCertificateChain may be
used as key with value NO in the dictionary for the key kCF-
StreamPropertySSLSettings to disable certificate validation.
The following listing shows the available keys and values
which are relevant in terms of security:

1) kCFStreamPropertySSLSettings
• kCFStreamSSLValidatesCertificateChain: Disable

the chain of trust validation.
• kCFStreamSSLPeerName: Sets a custom name used

for common name verification. Can be disabled at
all with kCFNull.

2) kCFStreamSSLLevel
• kCFStreamSocketSecurityLevelNone
• kCFStreamSocketSecurityLevelSSLv2
• kCFStreamSocketSecurityLevelSSLv3
• kCFStreamSocketSecurityLevelTLSv1
• kCFStreamSocketSecurityLevelNegotiatedSSL

There is also an equivalent Objective-C API for CFNetwork.
CFStreams are toll-free-bridge to the class NSStream. There-
fore one also has to check these SSL versions. The constants
are prefixed with NSStreamSocketSecurityLevel and set with
the selector setProperty:forKey: [6].

3) SSL/TLS security flaws: If any of these values are set,
one should take a closer look at it. Disabling the certificate
verification enables man-in-the-middle (MitM) attacks, where
an attacker can on the side intercept the whole traffic and on
the other side may be able to inject code or data.
Disabling the name verification is nearly as worse as don’t
checking the trust chain. It enables the attacker to present
any valid certificate. Using a lower SSL/TLS version offers
a bigger attack surface because there are certain attacks on
older versions like POODLE or BEAST. The first affects SSL
3.0, the latter also TLS 1.0 and enables an attacker to leak
information such as decrypted HTTPS cookies [21], [22].

C. IPC
Apple provides a simple form of IPC mechanism to allow

apps to exchange data and launch other apps through URL



schemes. Every app can register a scheme, which is hardcoded
in the applications Info.plist under the key CFBundleURL-
Types. The value of CFBundleURLSchemes contains the actual
scheme [6].
An application can handle a custom URL scheme by imple-
menting the method application:handleOpenURL: or applica-
tion:openURL:sourceApplication:annotation of the UIAppli-
cationDelegate protocol. The first is deprecated since iOS 4.2.
The latter is the replacement which improves security due to
the fact that the BundleID of the calling application is supplied.
For example the Facebook app can be launched by opening

<iframe src="fb://profile/"></iframe>

Figure 8. MitM De-cloaking [17]

the URL scheme depicted in figure 8. If the user hasn’t logged
out, the user will be redirect to his profile in the Facebook app.
Dhanjani shows that this can be used to decloak5 the identity
of a person through the injection of the malicious iframe
shown in the figure. To support several actions, a developer
can distinguish between transactions encoded in the URL. By
default, the IPC mechanism doesn’t require user authorization,
hence the application either has to implement it itself or ensure
that transactions aren’t allowed to modify or delete user data.
URL schemes can be exposed by examing the strings6 [17]
as they are likely to be hardcoded or reverse engineering the
scheme registration methods. To prevent misuse or a possible
attack, the developer should do thorough input validation
as well as asking for authorization before performing any
action [17]. An actual attack depends on the functionality
implemented by the developer and cannot be generalized.

D. Data Storage

Every iOS device has a dedicated AES crypto engine for
efficient data encryption. One has to distinguish between the
encryption of the whole file system and the protection of data
offering additional encryption.
The first is implement to allow a fast remote wipe so that in
the case of a device theft or loss, the data cannot be accessed.
In order to do that, a random file system key is generated while
the operating system is installed or a remote wipe has been
executed. The key is stored in Effaceable Storage and renders
the data useless by deleting they key.

1) Data Protection API: Despite the file system encryption,
one can further protect data by using the Data Protection API
which adds an additional layer of encryption. Depending on
the need and functionality there are several protection levels
available:

• Complete protection: Renders a file inaccessible after the
device has been locked.

5His attack uses a MitM attack (transparent proxy on fake WiFi AP) to
intercept the traffic and inject custom data with BurpSuite

6Use the command ”strings <App.app>” to view all string constants

• Protected unless open: A device unlock offers the appliac-
tion to obtain a file handle so that the file is not encrypted
unless it has been closed (uses elliptic curves [4]).

• Until first user authentication: This protection is equiva-
lent to full-disk encryption on the desktop.

• No protection: Files are only encrypted with the file
system key.

The API uses a hierarchy of keys: Each device has a Unique
device ID (UID) 256 Bit AES key so that files can be
cryptographically tied to the device. Furthermore, for every
file, a random 256 Bit AES per-file key is generated. To
implement the various protections, each level has it’s distinct
class key which is used to wrap the per-file key. The wrapped
key is stored in the file’s metadata. The class key is protected
with the UID and passcode/touchID for some classes.
The decryption works by decrypting the file’s metadata, un-
wrapping the wrapped per-file key with the class key and finally
passing the per-file key to the AES engine [4].
The API can be used either through the class NS(Mutable)Data
or NSFileManager. The protection level constant names differ
between these classes in that they are prefixed with either
NSDataWriting or NS. The constants to look out for are the
followings:

• FileProtectionNone
• FileProtectionComplete
• FileProtectionUnlessOpen
• FileProtectionCompleteUntilFirstUserAuthentication [13]

Moreover, the protections levels differ in their representation.
While for NSFileManager the levels are declared as strings,
the levels for NS(Mutable)Data are integers.
To detect the protection with NSFileManager in the disas-
sembly, one has to look out for the selector createFileAt-
Path:contents:attributes: on an instance of NSFileManager
where the parameter for attributes is a dictionary with the
protection level for the key NSFileProtectionKey which is
also a string [13]. The protection levels can also be detected
with Hopper by searching for the protection level in the

nl symbol ptr section.
For NS(Mutable)Data one has to check which integer value
has been passed to the options parameter of the selector
writeToFile:options:error:. The protection levels reach from
1 to 4 in the order of the enumeration given above.

2) Keychain: Sensitive data like credentials or access
tokens need stronger protection. Keychain, an encrypted
database, is made exactly for this purpose. Apps are restricted
to their own keychain through the keychain access group they
belong to. Items are protected with a class similiar like the
Data Protection API used it. There are two important ways of
modifying the protections: SecItemAdd can be used to add an
item to the keychain and SecItemUpdate can update it [13].
The protection levels are:

• kSecAttrAccessibleAlways(ThisDeviceOnly)
• kSecAttrAccessibleWhenUnlocked(ThisDeviceOnly)
• kSecAttrAccessibleAfterFirstUnlock(ThisDeviceOnly)



Every protection constant begins with kSecAttr. Moreover, the
ThisDeviceOnly prefixed constants are further protected with
the passcode/touchID and are not part of any backup. These
non-migratory levels are wrapped with the UID to tie it to the
device. The default protection is kSecAttrAccessibleAlways so
that the item is accessable at any time and can be migrated to
another device and is also included in backups [4].

3) NSUserDefaults: Developers have a convenient way to
store preferences through the NSUserDefaults class. Values
can be stored by calling the selector setObject:forKey:7 and
retrieved via objectForKey: [6]. To store sensitive data or
credentials, the developer should use the keychain instead
because the preference file can be downloaded via the Apple
File Communication Protocol (AFC) protocol.

4) Pasteboard: The copy and paste functionality of the
operating system is implemented within the class UIPaste-
board. It enables apps the easy exchange of data in the app
itself as well as between apps. The general pasteboard can be
accessed by every application by obtaining its instance with
[UIPasteboard generalPasteboard]. It’s persistent8 so that it
endures even after a reboot. Standard application pasteboards
are not persisent by default, but can be set to be. By knowing
the name of the applications pasteboard, another app can
access the data stored inside it [6].
A developer should use the pasteboard functionality with
care due to the fact that the general pasteboard makes the
stored data public. App specific pasteboards are public too,
if they are persistent [6]. The pasteboard is often used for
a migration from a free to a paid version. In general the
pasteboard shouldn’t be used for sensitive data. Furthermore,
the copy/paste functionality can be deactivated for fields with
sensitive data [18].

5) SQL: Application data is very often managed with the
help of SQL. Unsanitized user data can lead to injection attacks
where data is interpreted as code. The risk can be circumvented
by using parameterized statements so that user input gets
sanitized correctly and no code can be injected [23].
Figure 9 shows a SQL query which uses input from an external

sqlite3 *db;
char sqlbuf[256], *err;
sqlite3_open("sample.db", &db);
snprintf(sqlbuf, sizeof(sqlbuf), "SELECT * FROM

table WHERE user = %s", attackerControlled);
sqlite3_exec(db, sqlbuf, NULL, NULL, &err);

Figure 9. SQL Injection [20]

source. Possible attacks could leak information, gain database
access or possibly delete all data.

7The preference file can be found at /private/var/mobile/Containers/Bundle-
/Application/<UUID>/Library/Preferences/<BundleIdentifier>.plist

8Persistent pasteboards entries are stored unencrypted in the plist /private-
/var/mobile/Library/Caches/com.apple.UIKit.pboard/pasteboardDB and data
is base64 encoded [6]

E. Non Persistent Data

Despite the data at rest, the developer should also secure
non persistent information.

1) Keyboard Cache: The autocorrection feature, if turned
on, uses the input of text fields inside the applications. Except
for strings with digits only or very small text, the value
is not cached. Due to this caching, senstive data or even
credentials can be leaked. The feature can be disabled at all
or only on particular text fields: Either set autocorrectionType
to UITextAutocorrectionNo or mark it as secure by setting
secureTextEntry to YES [24].

2) Logging: Developers should be aware of the fact that
logging with NSLog redirects the output to the Apple system
log facility so that they can be viewed in Xcode. Therefore one
has to pay attention to what actual gets logged. Especially
debugging code can reveal sensitive information or even
credentials. A countermeasure against unintentional logging is
a pre-processor macro that performs conditional compilation
[13].

3) App transitions: When an application changes from
foreground to background, iOS takes a screenshot of the
running application to offer a zoom out and in animation
[17]. This can leak9 private information if the application does
not protect sensitive data. The protection can be achieved by
setting fields hidden if the application enters background and
make them visible if the application becomes active again.
The screenshots are secured with Data Protection (NSFilePro-
tectionComplete) if the passcode or touchID is used.

F. UIWebView

Developers want to keep their users as long as possible in
their apps. They can leverage the UIWebView to achieve this.
It can render web pages, PDFs, images, office documents etc.
so that the user can stay inside the app. Like every browser,
the rendering engine can execute JavaScript so that it can be
affected by Cross-Site Scripting (XSS) vulnerabilities if user
input has not been sanitized correctly. Therefore code injection
is possible which can lead to execution of arbitrary HTML and
JavaScript code. A XSS attack against an older Skype version
made it possible to upload the address book to a external server
[2].
Often developers use the UIWebView as GUI and imlement a
JavaScript to Objective-C bridge. Thus Cross-Site Scripting in
the UIWebView can be much more severe compared to classical
XSS attacks.

Figure 10 depicts the rendering of a local HTML page
from the application bundle. The index.html file contains the
line ”<script>document.write(myvar);</script>” that adds
the code from myvar to the Document Object Model (DOM) of
the web view [13]. If an attacker has control over the variable
myvar, he could inject arbitrary code (DOM based XSS). This
can lead to data theft or even Cross-Site Request Forgery as

9The taken screenshot can be found at /private/var/mobile-
/Containers/Data/Application/<UUID>/Library/Caches/Snapshots-
/<BundleIdentifier>/<BundleIdentifier> [6]



let myvar = "<script>alert(’XSS!’);</script>"
let js = "var myvar=\"" + myvar + "\";"
webView.stringByEvaluatingJavaScriptFromString(js)

webView.loadRequest(
NSURLRequest(
URL: NSURL(

fileURLWithPath: NSBundle.mainBundle().
pathForResource("index", ofType: "html")!

)!
)

)

Figure 10. XSS UIWebView (Swift version, ported from [13])

the attacker has control over the DOM.
Another important aspect to consider when using UIWebView
is that it doesn’t show the URL and can be used to spoof the
user interface. Therefore the user can be tricked into thinking
the displayed site is the trusted party he wants to visit [17].

G. The Big Picture

The previous sections showed common mistakes and
security threats that can happen to a iOS developer. This
chapter is meant to give a short summary: Developers should
leverage the Data Protection API to protect files and store
sensitive data like credentials in the more secure Keychain.
NSUserDefaults or the UIPasteBoard are a comfortable
way of storing and exchanging data but lack any kind of
encryption. Sensitive data in the user interface needs special
treatment so that it cannot be copied to the system pasteboard,
cached for autocorrection or get exposed into application
screenshots.
Apps always have to deal with data management. SQL
is a common way of storing data but imposes the threat
of SQL injection when not using prepared statements.
Exchanging information or sending data over the network
should implicate encryption and the proper use of certificate
handling. Otherwise MitM attacks on the one hand can leak
data and on the other hand can even manipulate it.
Even simple logging statements like NSLog or printf can lead
to format string vulnerabilities and leak data to the system log.

IV. CONCLUSION

iOS introduces a lot of security mechanisms. But this
doesn’t mean that applications are magically safe. Instead
developers need to take care of common security pitfalls
and always keep security in mind. Nearly all kind of threats
arise from unsanitized user input which leads to injection of
code. Therefore validation on user controlled data is always
necessary.
Focussing on the higher languages Objective-C or Swift pre-
vents common memory threats introduced through the C
programming language.
Often debug code is the main source of bugs which disables
e.g. the correct SSL/TLS validation to enable self-signed cer-
tificates in test environments.

Finally data is not hidden in source code. Login tokens,
encryption keys etc. should never be stored plaintext because
reverse engineering as well as debugging or runtime patching
through the dynamic capabilities of Objective-C reveals them.
Even anti-debugging techniques and obfuscation may not
protect data but instead only harden the analysis.
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